Problem Description
地理学家们经常要对一段河流进行测量分析。他们从上游开始向下游方向等距离地选择了n(<=30000)个点测量水位深度。得到了一组数据d1,d2,…dn,回到实验室后数据分析员需要对数据进行分析,发掘隐藏在数据背后的规律。最近,乌龙博士发现某种水文现象与河床地势有关,于是他指示分析员要找出一段河流中最大高低起伏差不超过k(<=100)的最长一段。这看似一个复杂的问题,由于任务紧急,分析员来求助于你,并告诉你博士所有数据都精确到个位。
Input
输入的第1行为整数t,表示有t组数据,每组数据有2行,第1行是两个整数n和k,分别表示测量点的个数和博士要求的最大水深差。第2行有n个整数,表示从上游开始依次得到的水位深度di(1<=i<=n, 0<=di<=32767)。
Output
对于每组数据输出整数m,表示最长一段起伏不超过k的河流长度,用测量点个数表示。
Sample Input
1 6 2 5 3 2 2 4 5
Sample Output
4
#include<iostream>
using namespace std;
int mp[30300],map[30300][101];
int main()
{
freopen("a.in","r",stdin);
int i,n,t,m,j,k,cnt;
cin>>t;
for(i=0;i<t;i++)
{
cin>>n>>m;
for(j=0;j<n;j++)
cin>>mp[j];
cnt=1;map[0][0]=1;
for(j=1;j<n;j++)
{
for(k=0;k<=m;k++)
{
int down=mp[j-1]-mp[j]+k;
if(down>=0&&down<=m)
map[j][k]=map[j-1][down]+1;
else
map[j][k]=1;
if(cnt<map[j][k])
cnt=map[j][k];
}
}
cout<<cnt<<endl;
}
return 0;
}