河床

Problem Description

地理学家们经常要对一段河流进行测量分析。他们从上游开始向下游方向等距离地选择了n(<=30000)个点测量水位深度。得到了一组数据d1,d2,…dn,回到实验室后数据分析员需要对数据进行分析,发掘隐藏在数据背后的规律。最近,乌龙博士发现某种水文现象与河床地势有关,于是他指示分析员要找出一段河流中最大高低起伏差不超过k(<=100)的最长一段。这看似一个复杂的问题,由于任务紧急,分析员来求助于你,并告诉你博士所有数据都精确到个位。

Input

输入的第1行为整数t,表示有t组数据,每组数据有2行,第1行是两个整数n和k,分别表示测量点的个数和博士要求的最大水深差。第2行有n个整数,表示从上游开始依次得到的水位深度di(1<=i<=n, 0<=di<=32767)。

Output

对于每组数据输出整数m,表示最长一段起伏不超过k的河流长度,用测量点个数表示。

Sample Input

1
6 2
5 3 2 2 4 5

Sample Output

4
 
 
 
 
#include<iostream>
using namespace std;
int mp[30300],map[30300][101];
int main()
{
	freopen("a.in","r",stdin);
	int i,n,t,m,j,k,cnt;
	cin>>t;
	for(i=0;i<t;i++)
	{
		cin>>n>>m;
		for(j=0;j<n;j++)
		      cin>>mp[j];
		cnt=1;map[0][0]=1;
		for(j=1;j<n;j++)
		{
			for(k=0;k<=m;k++)
			{
                int down=mp[j-1]-mp[j]+k;
				if(down>=0&&down<=m)
					map[j][k]=map[j-1][down]+1;
				else
					map[j][k]=1;
		    	if(cnt<map[j][k])
					cnt=map[j][k];
			}
		}
		cout<<cnt<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值