题目描述
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms
需要采用动态规划思想分析:
#include <iostream>
using namespace std;
const long long mod=1e9+7;
const long long maxn=1e9;
int dp[maxn][7];
int op[7];
int conflict[7][7];
int main()
{
int n,m;
cin>>n>>m;
int i,j,k;
int a,b;
for(i=0;i<m;i++)
{
cin>>a>>b;
conflict[a][b]=conflict[b][a]=1;//构造冲突数组
}
op[1]=4;op[2]=5;op[3]=6;op[4]=1;op[5]=2;op[6]=3;
for(j=1;j<=6;j++)
{
dp[0][j]=1;//初始化条件
}
for(i=1;i<=n;i++)
{
for(j=1;j<=6;j++)
{
for(k=1;k<=6;k++)
{
if(!conflict[op[j]][k])
{
dp[i][j]+=dp[i-1][k]%mod;
dp[i][j]%=mod;
}
}
}
}
long long x=1;
for(i=0;i<n;i++)
{
x*=4;
x=x%mod;
}
long long y=0;
for(j=1;j<=6;j++)
{
y+=dp[n-1][j];
y=y%mod;
}
cout<<x*y;
return 0;
}
但是dp数组过大,不能通过编译,并且时间复杂度过大为O(n^3)。并不能在实际中通过测试,理论是可行的。所以将采用矩阵快速幂的做法来进行优化操作。
#include <iostream>
using namespace std;
const long long mod=1e9+7;
//构造冲突矩阵
struct matrix{
int mat[6][6];
};
//初始为单位矩阵
void init1(matrix& a)
{
int i,j;
for(i=0;i<6;i++)
{
for(j=0;j<6;j++)
{
if(i==j)
{
a.mat[i][j]=1;
}
else
{
a.mat[i][j]=0;
}
}
}
}
//初始化冲突矩阵:mat[i][j]=1时为不冲突,mat[i][j]=0时为冲突
void init2(matrix& a)
{
int i,j;//初始化为全不冲突
for(i=0;i<6;i++)
{
for(j=0;j<6;j++)
{
a.mat[i][j]=1;
}
}
}
//初始化为0
void init3(matrix& a)
{
int i,j;
for(i=0;i<6;i++)
{
for(j=0;j<6;j++)
{
a.mat[i][j]=0;
}
}
}
//6*6的方阵的乘法
matrix multi(matrix a,matrix b)
{
matrix c;
int i,j,k;
init3(c);
for(i=0;i<6;i++)
{
for(j=0;j<6;j++)
{
for(k=0;k<6;k++)
{ //实际矩阵乘法不需要mod,mod是参照题意,防止过大,存储不下。
c.mat[i][j]+=((a.mat[i][k]%mod)*(b.mat[k][j]%mod))%mod;
c.mat[i][j]%=mod;
}
}
}
return c;
}
//矩阵快速幂算法
matrix fastPower1(matrix a,long long n)
{
matrix c;
init1(c);
while(n)
{
if(n&1)
{
c=multi(c,a);
}
a=multi(a,a);
n>>=1;
}
return c;
}
//4^n的快速幂
long long fastPower2(long long base,long long power)
{
long long result=1;
while(power)
{
if(power&1)
{
result=result*base%mod;
}
base=base*base%mod;
power>>=1;
}
return result;
}
int main()
{
int m,a,b;
long long n;
matrix matr;
cin>>n>>m;
init2(matr);//初始化为1:即不冲突
for(int i=0;i<m;i++)
{ //构建冲突矩阵
cin>>a>>b;
//mart.mat中的行和列都是指某一面朝上,所以matr.mat[a-1][b-1]这种写法是错的
matr.mat[a-1][(b+2)%6]=matr.mat[b-1][(a+2)%6]=0;//为什么啊?
//相当于conflict[op[i]][j]
}
matr=fastPower1(matr,n-1);//这里为什么是n-1呢?
long long pow=fastPower2(4,n);
long long ans=0;
//最后算列向量:第一层骰子乘冲突矩阵即直接矩阵中的数相加
for(int i=0;i<6;i++)
{
for(int j=0;j<6;j++)
{
ans+=matr.mat[i][j]%mod;
ans%=mod;
}
}
cout<<(ans*pow)%mod<<endl;
return 0;
}