N皇后问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18886 Accepted Submission(s): 8549
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1 8 5 0
Sample Output
1 92 10
Author
cgf
Source
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
using namespace std;
#define ll long long
int n,sum;
int a[15];
int x[15];
void dfs(int k,int m)
{
if(k==m+1)
{
sum++;
return;
}
for(int i=1; i<=m; i++)
{
a[k]=i;
int j;
for(j=1; j<=k-1; j++)
{
if((a[k]-a[j])==(k-j)||(a[k]-a[j])==(j-k)||a[j]==i)
break;
}
if(j>=k) dfs(k+1,m);
}
}
int main()
{
for(int i=1; i<=10; i++)
{
sum=0;
memset(a,0,sizeof a);
dfs(1,i);
x[i]=sum;
}
while(~scanf("%d",&n)&&n)
printf("%d\n",x[n]);
return 0;
}