Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry.
He bought n pieces of jewelry. The i-th piece has price equal to i + 1, that is, the prices of the jewelry are 2, 3, 4, ... n + 1.
Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used.
Help Sherlock complete this trivial task.
The only line contains single integer n (1 ≤ n ≤ 100000) — the number of jewelry pieces.
The first line of output should contain a single integer k, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints.
The next line should consist of n space-separated integers (between 1 and k) that specify the color of each piece in the order of increasing price.
If there are multiple ways to color the pieces using k colors, you can output any of them.
3
2 1 1 2
4
2 2 1 1 2
In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively.
In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.
题意:有n建物品,第i件的价值为i+1,给这n个物品着色,如果a物品的价值x和b物品的价值y,x是y的因子且x是质数,则a物品和b物品的颜色不能一样,求最小使用颜色数目;以及n个物品的着色方案
解题思路:最多需要两种颜色,素数染1,合数染2
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
int n,f[100090];
void init()
{
memset(f,0,sizeof f);
f[0]=f[1]=1;
for(int i=2;i<=100050;i++)
{
if(f[i]) continue;
for(int j=i*2;j<=100050;j+=i)
f[j]=1;
}
}
int main()
{
init();
while(~scanf("%d",&n))
{
if(n==1||n==2) printf("1\n");
else printf("2\n");
printf("%d",f[2]+1);
for(int i=3;i<=n+1;i++)
printf(" %d",f[i]+1);
printf("\n");
}
return 0;
}