机器学习 - 基本概念

机器学习是一门涉及概率论、统计学等多学科的交叉学科,旨在通过数据和算法让计算机学习并提升性能。本文介绍了机器学习的重要元素——数据和模型,以及监督学习和无监督学习的基本概念。并探讨了过拟合、欠拟合、成本函数、交叉验证数据集、查准率、召回率和F1 Score等核心理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习 (Machine Learning, ML) 是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

以上是官方套话,摘自百度百科。乍一看,读者会觉得机器学习很神奇,很难入门。但实际上,用一句更简单的话总结:机器学习是一个计算机程序,对于某个任务从经验中进行学习,并且会随着学习的越多做得越来越好。

简介

所以我们很容易就知道机器学习中最重要的两个东西

1、数据:有了数据才能够训练程序。只要掌握的数据质量高、数量大,就相当于拿到了训练出好的模型的钥匙🔑。这也就是为什么 Google 的人工智能会如此成功,因为他们手中掌握了大量的数据。
2、模型:也就是算法。特定的模型能够完成特定的任务。
 

机器学习的分类

机器学习大体上可以分为两类,一类是监督学习,一类是无监督学习
顾名思义,有监督学习就是通过大量已知的输入和输出相配对的数据(有标记的数据),让计算机从中学习规律,从而能针对新的输入做出合理的输出预测。无监督学习就是给计算机大量的无标记的输入数据,去分析它们内在的结构以及联系,从而去把这些数据自动分类,这就叫做聚类
细分下去,有监督学习可以分为两种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值