RNN与反向传播算法(BPTT)的理解

RNN是序列建模的强大工具。
今天主要搬运两天来看到的关于RNN的很好的文章:

PS: 第一个链接中的Toy Code做一些说明

图片名称

之所以要循环8(binary_dim=8)次,是因为输入是2维的(a和b各输入一个bit),那么,每个bit只会影响8个时间戳。因此要注意RNN的训练,应该以每一个完整的序列(这里就是a和b两个八位二进制数)作为一个training sample,而非以每一次输入(2 bits)作为一个sample;同样的在反向传播时,也同样遵循这个原则,此处因为每次输入会影响8个时间戳(或者说每8次输入为一个完整的training sample),所以要循环8次。

再然后,第99行(五角星处)的隐层delta更新法则与上面给出的RNN反向传播算法BPTT一文中的下图正好一致!

这里写图片描述

先写这么多。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值