拓扑排序

 

//入度 顶点编号

0 0 11 5 4 -1
0 1 8 4 2 -1
2 2 9 6 5 -1
0 3 13 3 2 -1
2 4 7 -1
3 5 12 8 -1
1 6 5 -1
2 7 -1
2 8 7 -1
2 9 11 10 -1
1 10 13 -1
2 11 -1
1 12 9 -1
2 13 -1

 

 

前提:  有向无环图

 

 

 在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,称为AOV网(Activity On Vertex Network).

 AOV中的弧表示活动之间存在着制约关系   比如:要想上中学,必须先上小学   这样小学作为弧的弧尾,中学作为弧的弧头。

 

对于拓扑排序的构造过程,有两个结果。

1.如果此网的全部顶点被输出,则说明是不存在环的AOV网。

2.如果输出的顶点数量少了,哪怕是少一个,说明网存在环,不是AOV网。

 

 

#include <iostream>
#include <stack>
#include <string>
#include <vector>
using namespace std;

#define MAXVEX 14
int edgeNum;
vector<vector<int> > res;
//边表节点 
struct EdgeNode {
	int adjvex;					//该顶点的索引 
	struct EdgeNode* next;

	EdgeNode(int data) {
		this->adjvex = data;
		this->next = NULL;
	}
};
//出发顶点表节点
typedef struct VertexNode {
	int in;						//顶点入度数
	int data;					//顶点编号 
	EdgeNode* firstedge;		//边表头节点 
	EdgeNode* endedge;			//边表尾节点 

}VertexNode, AdjList[MAXVEX];

//将 边表节点和顶点表 一起打包 
struct Graph {
	AdjList adjList;
	int numVertexes, numEdges;
	Graph() {
		this->numVertexes = MAXVEX;
		this->numEdges = edgeNum;
	}

};

void init(AdjList& adjlist) {

	for (int i = 0; i < MAXVEX; i++) {
		//初始虚拟头结点的后继一定要为NULL 
		adjlist[i].firstedge = NULL;
		//输入顶点表的入度 和 顶点编号(不是索引号) 
		cin >> adjlist[i].in;
		cin >> adjlist[i].data;
		int index;
		//输入边表节点中 顶点的"索引" 
		while (cin >> index && index != -1) {
			edgeNum++;
			//节点打包 并用倒插法插入到当前的虚拟头节点后 
			EdgeNode* v = new EdgeNode(index);
			v->next = adjlist[i].firstedge;
			adjlist[i].firstedge = v;
		}
	}
}

//打印邻接表 
void println(AdjList adjlist) {
	cout << "*************************************" << endl;
	cout << "邻接表 :" << endl;
	for (int i = 0; i < MAXVEX; i++) {
		cout << adjlist[i].in << " V" << adjlist[i].data << "->   ";
		EdgeNode* v = adjlist[i].firstedge;
		while (v != NULL) {
			cout << v->adjvex << "->";
			v = v->next;
		}
		cout << "NULL" << endl;
	}
	cout << "*************************************" << endl;
}

bool TopologicalSort(AdjList adjlist) {

	//以不同的顺序初始入栈 
	for (int j = 0; j < MAXVEX; j++) {
		vector<int> vec;
		stack<VertexNode> s;
		int num = 0;
		//最初入度为0的节点入栈  即不需要前置条件即可的
		for (int i = j; ; i++) {
			i = i % MAXVEX;
			//编号为i的节点入度为0  入栈 
			if (adjlist[i].in == 0)
				s.push(adjlist[i]);
			num++;
			if (num == MAXVEX)
				break;
		}
		//逐一出栈  将出栈后的顶点的  弧头链接的顶点入度-1
		while (!s.empty()) {
			VertexNode tex = s.top();
			vec.push_back(tex.data);
			EdgeNode* e = tex.firstedge;
			s.pop();
			while (e != NULL) {
				//入度数减1  如果为0 通过索引找到节点 
				adjlist[e->adjvex].in--;
				if (adjlist[e->adjvex].in == 0)
					s.push(adjlist[e->adjvex]);
				e = e->next;
			}
		}
		如果顶点数不等于总数 说明存在环 即不存在拓扑排序
		if (vec.size() == MAXVEX) {
			res.push_back(vec);
		}
	}

	if (res.size())
		return true;
	return false;

}
void println(vector<vector<int> > v) {
	cout << "*************************************" << endl;
	cout << "拓扑序列 : ";
	for (int i = 0; i < v.size(); i++) {
		for (int j = 0; j < v[i].size(); j++) {
			cout << v[i][j];
			if (j < v[i].size() - 1)
				cout << " -> ";
		}
		cout << endl;
	}

	cout << "*************************************" << endl;
}
int main()
{
	AdjList adjlist;
	init(adjlist);
	println(adjlist);
	bool t = TopologicalSort(adjlist);
	if (t)
		println(res);
	else
		cout << "无路径" << endl;
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值