python 之 浮点数精度丢失例如:0.1 + 0.2,产生的原因、问题的推导、解决的方案

浮点数表示与精度问题详解
文章讨论了计算机中浮点数的二进制表示法,解释了为什么某些十进制数如0.1无法精确表示为二进制,导致精度丢失。通过示例展示了浮点数转二进制的计算方法,并以0.1+0.2的问题为例说明浮点数精度问题。解决方案是使用如Python的Decimal类型来提高精度。
本文章已经生成可运行项目,
一、背景
  • 计算机基本上使用二进制数字,即 0 或 1表示;
    十进制: 1 / 3 = 0.3333333333… 无限循环的情况
    浮点数的总数是无限且不可数的,浮点数在计算机占用的内存是有限的,如果表示计算机内存则占满
    不可能用有限的内存空间存储无限多的浮点,后面多余的部分都会被砍掉

  • 计算机的浮点类型也是由二进制表示的 浮点标准
    同上并不是所有的十进制数都可以用二进制格式精确表示,
    有些是使用有限数量的二进制数字来近似的
    例如 浮点型0.1 转化二进制的结果 0.00011001100110011001100110011001100110011001100…

二、浮点数转二进制计算方法
  • 1. 对十进制小数乘2得到的整数部分和小数部分
    2. 整数部分即是相应的二进制数码
    3. 再用2乘小数部分,又得到整数和小数部分
    4. 不断重复,直到小数部分为0或达到精度要求为止
    5. 第一次所得到为最高位,最后一次得到为最低位
    
  • 0.25 * 2 = 0.5     整数部分 0    小数部分 5
    0.5  * 2 = 1.0     整数部分 1    小数部分 0
    
    浮点型0.25 转化二进制的结果 0.01
    
  • 0.8125 * 2 = 1.625  整数部分 1   小数部分 625
    0.625  * 2 = 1.25   整数部分 1   小数部分 25
    0.25   * 2 = 0.5    整数部分 0   小数部分 5
    0.5    * 2 = 1.0    整数部分 1   小数部分 0
    
    浮点型0.8125 转化二进制的结果 0.1101
    
  • 0.1 * 2 =   0.2        整数部分 0   小数部分 2
    0.2 * 2 =   0.4        整数部分 0   小数部分 4
    0.4 * 2 =   0.8        整数部分 0   小数部分 8
    0.8 * 2 =   1.6        整数部分 1   小数部分 6
    0.6 * 2 =   1.2        整数部分 1   小数部分 2
    
    0.2 * 2 =   0.4        整数部分 0   小数部分 4
    0.4 * 2 =   0.8        整数部分 0   小数部分 8
    0.8 * 2 =   1.6        整数部分 1   小数部分 6
    0.6 * 2 =   1.2        整数部分 1   小数部分 2
    ...       ....         .......
    
    浮点型0.1 转化二进制的结果 0.0001100110011001100110011001100110...
    
  • 结论
    浮点数是以二进制形式存储的,将浮点数转化为二进制过程中,也会出现无限循环的情况,造成结果的不准确
三、 浮点数精度丢失解决 例如:0.1 + 0.2 问题

浮点数精度丢失通常在涉及不能精确表示为有限小数的数字时发生,
例如 0.1 或 0.2 这样的数字,因为它们在二进制表示中是无限循环小数。
由于计算机的二进制表示是有限的,所以在转换为二进制表示时会有一定的近似,从而导致小数的精度问题。

0.1  0.00011001100110011001100110011001100110011001101...
0.2  0011001100110011001100110011001100110011001100110...

python是以双精度(64bit)来保存浮点数的,后面多余的会被砍掉,所以在电脑上实际保存的已经小于0.1的值了,后面拿来參与运算就产生了误差

在这里插入图片描述

  • 对稳定性、安全性要求非常高的程序,尽量避开浮点数
  • 使用 Decimal 类型:提供了更高的精度,能避免浮点数运算的一些常见问题
    from decimal import Decimal
    a = Decimal('0.1') + Decimal('0.2')
    print(float(result))  # 将结果转换为浮点数输出,得到正确的结果:0.3
    
四、0.1 + 0.3 呢
0.1(10)0.0001100110011001100110011001100110011001100110011001101...(2)
0.3(10)0.0100110011001100110011001100110011001100110011001101...(2)
0.0001100110011001100110011001100110011001100110011001101...(2) 
+
0.0100110011001100110011001100110011001100110011001101...(2)
=
0.0110011001100110011001100110011001100110011001101101...(2)

将上述二进制结果转换回十进制,它大约等于 0.4(10)。
注意,这个结果仍然是一个近似值,因为我们只取了有限位数的二进制表示进行计算。

0.1 + 0.3二进制    0.0110011001100110011001100110011001100110011001101101...
0.4  二进制        0.0110011001100110011001100110011001100110011001100110...

在十进制中,0.1 + 0.3 确实等于 0.4。
在计算机内部,由于浮点数的二进制表示和有限精度,0.1 + 0.3 的二进制近似值并不等于 0.4 的二进制近似值。
因此,在某些情况下,由于浮点数精度问题,可能会导致 0.1 + 0.3 不等于 0.4。

五、如何解决:decimal 模块

虽然浮点数的精度问题无法完全避免,但可以通过以下方法来减轻或解决这个问题:

  • 使用 decimal 模块:
    Python 的 decimal 模块提供高精度的十进制运算,适用于金融和其他需要高精度的应用场景
    from decimal import Decimal
    
    result = Decimal('0.1') + Decimal('0.2')
    print(result)  # 输出 0.3
    
六、round 函数为啥不行

浮点数在计算机中是以二进制形式存储的,而某些十进制小数无法精确地表示为二进制小数。即使你使用 round 函数,结果也可能不是你期望的值。

  • round 函数的作用是四舍五入,但它并不能修正浮点数的内在不精确性

    result = 0.1 + 0.2
    print(result)  # 输出 0.30000000000000004
    
    rounded_result = round(result, 1)
    print(rounded_result)  # 输出 0.3
    

    round 函数确实将结果四舍五入到了 0.3,但这只是表面上的修正
    实际上,result 的值仍然是 0.30000000000000004

    在进行多次浮点数运算时,误差可能会累积,导致最终结果与预期值相差较大。
    即使在每一步使用 round 函数,也无法完全消除这种累积误差。

本文已生成可运行项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风华浪浪

讨个老婆本呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值