支配树 与 tarjan算法

本文详细介绍了支配树的概念,从有向图、无环图到有向图的支配树构建方法,探讨了简单方法和更快的Lengauer-Tarjan算法,涉及到半必经点和必经点的定理及其在算法中的应用,最终通过具体实现展示了如何在O((n+m)×α(n))时间内解决支配树问题。
摘要由CSDN通过智能技术生成

简介

什么是支配树?支配树是什么?XD
对于一张有向图(可以有环)我们规定一个起点r(为什么是r呢?因为网上都是这么规定的),从r点到图上另一个点w可能存在很多条路径(下面将r到w简写为r->w)。
如果对于r->w的任意一条路径中都存在一个点p,那么我们称点p为w的支配点(当然这也是r->w的必经点),注意r点不讨论支配点。下面用idom[u]表示离点u最近的支配点。
对于原图上除r外每一个点u,从idom[u]向u建一条边,最后我们可以得到一个以r为根的树。这个树我们就叫它“支配树”。


相似

这个东西看上去有点眼熟?
支配点和割点(删掉后图联通块数增加)有什么区别?
我们考虑问题给定一个起点r和一个终点t,询问删掉哪个点能够使r无法到达t。
很显然,我们删掉任意一个r->t的必经点就能使r无法到达t,删掉任意一个非必经点,r仍可到达t。
从支配树的角度来说,我们只需删掉支配树上r到t路径上的任意一点即可
从割点的角度来说,我们是不是只需要考虑所有割点,判断哪些割点在r->t的路径上即可?是否将某个割点删掉即可让r无法到达t?
这当然是不正确的,我们可以从两个方面来说明它的错误:

  1. 删掉割点不一定使r无法到达t
    情况1
    这个图中点u是关键点(删掉后图联通块个数增加)
    并且u在r->t的路径上,然而删掉点u后r仍然可以到达t
  2. 图中不一定存在割点
    情况2
    在这个图中不存在任何割点

所以我们没有办法使用割点来解决这个问题。


简化问题

  • 对于一棵树,我们用r表示根节点,u表示树上的某个非根节点。很容易发现从r->u路径上的所有点都是支配点,而idom[u]就是u的父节点。
    这个可以在 O(n) 的时间内实现。

  • DAG(有向无环图)

    因为是有向无环图,所以我们可以按照拓扑序构建支配树。
    假设当前我们构造到拓扑序中第x个节点编号为u,那么拓扑序中第1 ~ X-1个节点已经处理好了,考虑所有能够直接到达点u的节点,对于这些节点我们求出它们在支配树上的最近公共祖先v,这个点v就是点u在支配树上的父亲。
    如果使用倍增求LCA,这个问题可以在 O((n+m)log2n) 的时间内实现。

对于这两个问题我们能够很简便的求出支配树。


有向图

对于一个有向图,我们应该怎么办呢?

简单方法

我们可以考虑每次删掉一个点,判断哪些点无法从r到达。
假设删掉点u后点v无法到达,那么点u就是r->v的必经点(点u就是v的支配点)。
这个方法我们可以非常简单的在 O(nm) 的时间内实现。
其中 n 是点数, m 是点数。

更快的方法

这里,我将介绍Lengauer-Tarjan算法。
这个算法能在很快的时间内求出支配树。
要介绍这个算法我们还需引入两个定理和一些概念

大概步骤

首先来介绍一些这个算法的大概步骤

  1. 对图进行DFS(深度优先遍历)并求出搜索树和DFS序。这里我们用 dfn[x] 表示点 x 在dfs序中的位置。
  2. 根据半必经点定理计算出所有的半必经点作为计算必经点的根据
  3. 根据必经点定理修正我们的半必经点,求出支配点

半必经点

我们用idom[x]表示点x的最近支配点,用semi[x]表示点x的半必经点。
那什么是半必经点呢?

对于一个节点 Y ,存在某个点 X 能够通过一系列点 pi (不包含 X Y )到达点 Y i dfn[i]>dfn[Y] ,我们就称 X

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值