简介
什么是支配树?支配树是什么?XD
对于一张有向图(可以有环)我们规定一个起点r(为什么是r呢?因为网上都是这么规定的),从r点到图上另一个点w可能存在很多条路径(下面将r到w简写为r->w)。
如果对于r->w的任意一条路径中都存在一个点p,那么我们称点p为w的支配点(当然这也是r->w的必经点),注意r点不讨论支配点。下面用idom[u]表示离点u最近的支配点。
对于原图上除r外每一个点u,从idom[u]向u建一条边,最后我们可以得到一个以r为根的树。这个树我们就叫它“支配树”。
相似
这个东西看上去有点眼熟?
支配点和割点(删掉后图联通块数增加)有什么区别?
我们考虑问题给定一个起点r和一个终点t,询问删掉哪个点能够使r无法到达t。
很显然,我们删掉任意一个r->t的必经点就能使r无法到达t,删掉任意一个非必经点,r仍可到达t。
从支配树的角度来说,我们只需删掉支配树上r到t路径上的任意一点即可
从割点的角度来说,我们是不是只需要考虑所有割点,判断哪些割点在r->t的路径上即可?是否将某个割点删掉即可让r无法到达t?
这当然是不正确的,我们可以从两个方面来说明它的错误:
- 删掉割点不一定使r无法到达t
这个图中点u是关键点(删掉后图联通块个数增加)
并且u在r->t的路径上,然而删掉点u后r仍然可以到达t - 图中不一定存在割点
在这个图中不存在任何割点
所以我们没有办法使用割点来解决这个问题。
简化问题
树
对于一棵树,我们用r表示根节点,u表示树上的某个非根节点。很容易发现从r->u路径上的所有点都是支配点,而idom[u]就是u的父节点。
这个可以在 O(n) 的时间内实现。DAG(有向无环图)
因为是有向无环图,所以我们可以按照拓扑序构建支配树。
假设当前我们构造到拓扑序中第x个节点编号为u,那么拓扑序中第1 ~ X-1个节点已经处理好了,考虑所有能够直接到达点u的节点,对于这些节点我们求出它们在支配树上的最近公共祖先v,这个点v就是点u在支配树上的父亲。
如果使用倍增求LCA,这个问题可以在 O((n+m)log2n) 的时间内实现。
对于这两个问题我们能够很简便的求出支配树。
有向图
对于一个有向图,我们应该怎么办呢?
简单方法
我们可以考虑每次删掉一个点,判断哪些点无法从r到达。
假设删掉点u后点v无法到达,那么点u就是r->v的必经点(点u就是v的支配点)。
这个方法我们可以非常简单的在 O(nm) 的时间内实现。
其中 n 是点数,
更快的方法
这里,我将介绍Lengauer-Tarjan算法。
这个算法能在很快的时间内求出支配树。
要介绍这个算法我们还需引入两个定理和一些概念
大概步骤
首先来介绍一些这个算法的大概步骤
- 对图进行DFS(深度优先遍历)并求出搜索树和DFS序。这里我们用 dfn[x] 表示点 x 在dfs序中的位置。
- 根据半必经点定理计算出所有的半必经点作为计算必经点的根据
- 根据必经点定理修正我们的半必经点,求出支配点
半必经点
我们用idom[x]表示点x的最近支配点,用semi[x]表示点x的半必经点。
那什么是半必经点呢?
对于一个节点
Y ,存在某个点 X 能够通过一系列点pi (不包含 X 和Y )到达点 Y 且∀i dfn[i]>dfn[Y] ,我们就称 X 是