支配树(有向图)

本文介绍了有向图中的支配树概念,从起点s出发,前往任意点p的路径中,存在一些关键点xp,它们对于路径的连通性至关重要。对于无环的有向图(DAG),可以通过拓扑排序和求最近公共祖先(LCA)来解决这一问题。作者分享了自己的代码实现,并提到该问题在JZOI灾难题目中的应用。目前,作者对于一般有向图的解法还在学习阶段。
摘要由CSDN通过智能技术生成

支配树的定义:

问题:我们有一个有向图(可以有环),定下了一个节点为起点s。现在我们要求:从起点s出发,走向一个点p的所有路径中,必须要经过的点有哪些{xp}。

换言之,删掉{xp}中的任意一个点xpi以及它的入边出边,都会使s无法到达p。

 

对于DAG的解法:

1.拓扑排序

2.求LCA,建树。

3.统计信息。

我的代码:JZOI灾难   题目要求的就是每个点能够支配的点的个数。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pb(x) push_back(x)

const int N = 3e5+5;
const int sz = 18;
int a[N];
struct node
{
    int to,nt;
}g[N];
int tot;
int head[N];

void addedg(int u,int v)
{
    g[tot].to=v;
    g[tot].nt=head[u];
    head[u]=tot++;
}

vector<int>v[N],v1[N],v2[N];
int in[N];

void topsort(int n)
{
    queue<int>q;
    for(int i=1; i<=n; i++)
        if(in[i]==0)q.push(i);
    int cnt=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值