简单数学-力扣-java

class Solution {
    public int countPrimes(int n) {
        boolean []ispri=new boolean[n];
        Arrays.fill(ispri,true);
        for(int i=2;i<n;i++){
            if(ispri[i]){
                for(int j=2*i;j<n;j+=i){
                    ispri[j]=false;
                }
            }
        }
        int cnt=0;
        for(int i=2;i<n;i++){
            if(ispri[i])
                cnt++;
        }
        return cnt;
    }
}

 

class Solution {
    public String convertToBase7(int num) {
        return Integer.toString(num,7);
    }
}
java,进制可以推广到n
class Solution {
    public String convertToBase7(int num) {
        StringBuilder sb=new StringBuilder();
        if(num==0) return "0";
        boolean flag=num<0?true:false;
        num=Math.abs(num);
        while(num!=0){
            sb.append(num%7);
            num/=7;
        }    
        if(flag)
            sb.append("-");
        return sb.reverse().toString();      
    }
}

26jingzhi
class Solution {
    public String convertToTitle(int n) {
        if(n<0) return "";
        StringBuilder sb=new StringBuilder();
        while(n>0){
            n--;
            sb.append((char)(n%26+'A'));
            n/=26;
        }
        return sb.reverse().toString();
    }
}

class Solution {
    public int trailingZeroes(int n) {
        int cnt=0;
        while(n>=5){
            cnt+=n/5;
            n/=5;
        }
        return cnt;
    }
}

解题思路:中位数

 

class Solution {
    public int minMoves2(int[] nums) {
        Arrays.sort(nums);
        int i=0,j=nums.length-1,cnt=0;
        while(i<j){
            cnt+=nums[j]-nums[i];
            j--;
            i++;
        }
        return cnt;

    }
}

class Solution {
    public int majorityElement(int[] nums) {
        HashMap<Integer,Integer>mp=new HashMap<>();
        for(int num:nums){
            if(mp.containsKey(num)){
                mp.put(num,mp.get(num)+1);
            }
            else
                mp.put(num,1);
        }
        for(int key:mp.keySet()){
            if(mp.get(key)>nums.length/2)
                return key;
        }
        return -1;
    }
}

解题思路:利用 1+3+5+7+9+…+(2n-1)=n^2,即完全平方数肯定是前n个连续奇数的和 

class Solution {
    public boolean isPerfectSquare(int num) {
        int i=1;
        while(num>0){
            num-=i;
            i+=2;
        }
        return num==0;
    }
}

class Solution {
    public boolean isPowerOfThree(int n) {
        if(n==0) return false;
        if(n==1) return true;
        while(n%3==0){
            n/=3;
            if(n==1) 
                return true;
        }
        return false;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值