深度学习
文章平均质量分 88
Python风控模型与数据分析
这个作者很懒,什么都没留下…
展开
-
文本分类-Word2vec+LSTM
LSTM是专门用于处理序列数据(文本序列、时间序列)等的RNN模型之一,本文分别按照embedding+LSTM、word2vec预训练模型+双向LSTM两种方式进行文本分类的代码实战,附带LSTM层参数详解,尽可能给读者带来多的收获原创 2023-09-26 09:00:00 · 1223 阅读 · 2 评论 -
文本分类- Embedding/Wordvec+DNN
本文介绍embedding原理,并分别按照embedding+DNN、word2vec预训练模型+DNN、word2vec+DNN微调三种方式进行文本分类的代码实战,附带参数详解,尽可能给读者带来多的收获原创 2023-09-06 09:30:00 · 448 阅读 · 1 评论 -
Word2vec原理及参数详解
Word2Vec有两种主要的模型架构:连续词袋模型(Continuous Bag of Words,简称CBOW)和跳字模型(Skip-gram)。训练Word2Vec的核心目标是通过调整单词向量的权重,使得模型能够最小化实际上下文单词的预测误差,得到的词向量可用于文本分类、文本相似度、推荐等下游任务。通过多次迭代,模型将学习到单词向量,这些向量在向量空间中能够捕获单词之间的语义关系,使得具有相似语义的单词在向量空间中距离较近。原创 2023-08-30 10:00:00 · 3191 阅读 · 0 评论