模型可解释性-shap value

        Shap值衡量特征的边际贡献度,是当前模型解释的最佳方法之一,对于模型进行可视化的全局解释、局部解释,可以在一定程度上满足业务对于模型解释性的要求。其全局解释,(特征对于整体模型的影响)可以作为特征重要性帮助筛选变量;局部解释(对单个样本的预测结果进行解释)可以直观地让我们看到单个样本预测结果的主要影响因素-特征有哪些、以及相应的影响程度,这样在风控业务中对于模型预测风险偏高的样本、我们可以给出模型认为他风险偏高的原因。

一、shap的本质原理,以例子来说明:

        有甲、乙、丙三个工人,单人工作时、多人协同工作时每天的罐子产量如下:

        按照产量计算每个人的边际贡献度:

        得到每人的平均贡献度:

二、代码应用

1 导包及模型训练

# 导包
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve,roc_auc_score
import xgboost as xgb
import matplotlib.pyplot as plt

# 训练模型
train=df_train.head(10000)
test=df_train.tail(5000)

dtrain = xgb.DMatrix(train[col_list], label = train['isDefault'])
dtest = xgb.DMatrix(test[col_list], label = test['isDefault'])

params={
    'booster': 'gbtree',
    'objective': 'binary:logistic',
    'eval_metric': [ 'logloss','auc'],
    'gamma':10,
    'max_depth': 3}
model = xgb.train(params=params,
          dtrain=dtrain,
          verbose_eval=True,
          evals=[(dtrain, "train"), (dtest, "valid")],
          early_stopping_rounds=10,
          num_boost_round = 30
                  )

2 Shap包导入及shap_value计算

import shap
shap.initjs() 
# 加载js,否则会报错Visualization omitted, Javascript library not loaded!

explainer = shap.Explainer(model)
shap_values = explainer.shap_values(train[col_list])
shap_values2=explainer(train[col_list])
shap_values2

(一)局部解释性

对单个样本的预测结果解释,通过shap值展示出各特征值对当前预测结果的贡献度,可以使用shap值top变量给出该条样本最终被拒绝的原因

(1) 力图

shap.plots.force(shap_values[0])

        此处第一条样本的实际预测结果为0.3338,在力图及下面瀑布图中显示的结果-0.69与预测概率为logit的关系,两者保持单调;图中红色条框为正向影响、蓝色条框为负向的变量,下方均为相应变量以及变量值,其中interestRate的正向贡献度最大。

(2)瀑布图

shapley_value(train[col_list].head(1),model,max_display=10)

        瀑布图中给出了基准线E[f(x)] = -1.445,对应的预测概率计算方式为取反logit:p=1-1/(math.exp(-1.445)+1)=0.19为平均预测概率,此处interestRate贡献度为0.74。瀑布图更加直观地展示出模型对于单个样本预测结果的解释,该样本的预测结果0.3338,结合下图的散点图(interestRate与y标签保持正向相关性)可以给出解释:由于该样本的interestRate值偏高,导致预测概率偏高。

(3)散点图-依赖图

shap.plots.scatter(shap_values2[:,"interestRate"])

        散点图可以大致看到interestRate特征与shap值是正相关关系,即其他特征稳定的条件下,interestRate特征值越大、shap值越大、对应的最终预测概率越高。

shap.dependence_plot('interestRate', shap_values2.values, train[col_list])

(二) 全局解释性

(1)蜂窝图

shap.plots.beeswarm(shap_values2)

        为了了解哪些特征对模型最重要,我们可以绘制每个样本的每个特征的 SHAP 值。蜂窝图按照所有样本的 SHAP 值之和对特征进行降序排序(即特征重要性降序排序),并使用 SHAP 值显示每个特征对模型输出结果的影响分布。颜色代表特征值(红色代表特征值高,蓝色代表特征值低)。此处,红色方向在右边代表特征对模型预测结果的影响为正向的,反之为逆向的。

(2)平均shap值的条形图

shap.plots.bar(shap_values2)

        此处取每个特征 SHAP 值的平均绝对值来获得标准条形图,效果类似于feature_importance的条形图,可以通过设置参数来显示多个特征shap值,其他特征的总shap值会放在最后一条。

三、划重点

        关注威信公众号Python风控模型与数据分析,更多理论、代码分享等你来拿

<think>嗯,用户想在Anaconda环境中用随机森林分类模型计算并可视化SHAP值。首先,我得确认需要的库和安装步骤。SHAP可能需要单独安装,用户可能已经安装了scikit-learn和pandas,但最好还是列出所有必要的包,比如shap、scikit-learn、pandas、matplotlib。 接下来,示例数据的选择。可能用鸢尾花数据集,因为它是分类的常用数据集,而且容易获取。然后,数据预处理部分需要划分训练集和测试集,可能还要标准化,不过对于树模型来说,标准化可能不是必须的,但用户可能会参考其他代码示例,所以还是提到比较好。 然后是模型训练,随机森林分类器,这部分比较直接。创建模型,训练,评估准确性,用户可能需要看到基本的评估指标,比如准确率,所以这部分要加上。 接下来是SHAP部分。需要创建TreeExplainer,这里要注意参数是否正确。比如,对于树模型,TreeExplainer是合适的。计算SHAP值时,分类模型可能会有多个输出,可能需要处理不同类别的SHAP值。比如,二分类和多分类的处理方式可能不同,示例中使用的是多分类的鸢尾花数据集,所以可能需要展示如何获取每个类别的SHAP值。 可视化部分,用户可能需要常见的图表,比如summary_plot、dependence_plot、decision_plot。要注意SHAP的版本是否支持这些图表,以及是否需要调用initjs()来初始化JavaScript,不过最新版本的SHAP可能不需要了,但为了兼容性,可能还是加上比较好。 还有,用户提到解决SHAP结果格式的问题,比如对多类别的SHAP值求和,可能需要用np.sum来处理,这在示例代码中有体现吗?可能需要检查代码是否正确处理多分类的情况,比如shap_values是一个列表,每个元素对应一个类别的SHAP值,所以在summary_plot中需要指定plot_type="bar"或者其他类型,可能需要调整。 另外,用户提供的引用中提到了feature_perturbation参数,需要确认在TreeExplainer中是否需要设置,比如"tree_path_dependent"是否适合随机森林模型。通常对于树模型,这个参数是正确的,应该包含在示例中。 还有环境配置的问题,用户使用Anaconda,可能需要提醒他们使用conda安装shap包,或者用pip安装。比如,conda install -c conda-forge shap 或者 pip install shap。 在代码示例中,是否需要加入保存图像的步骤?比如plt.savefig,或者用户可能更倾向于在Notebook中直接显示图表,所以用plt.show()更合适。 最后,生成的相关问题需要考虑用户可能的后续需求,比如优化SHAP计算速度、处理多分类的可视化、与其他可解释性工具对比,或者实际应用场景的例子。这些问题需要围绕SHAP和随机森林分类模型展开,确保覆盖用户可能感兴趣的方面。</think>以下是在Anaconda环境中实现随机森林分类模型SHAP值计算及可视化的完整步骤和示例代码: ### 环境准备 ```python # 安装必要库(Anaconda中已包含的库可跳过) conda install -c conda-forge shap scikit-learn pandas matplotlib ``` ### 完整实现代码 ```python import shap import pandas as pd from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据 iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 模型评估 y_pred = rf.predict(X_test) print(f"准确率: {accuracy_score(y_test, y_pred):.2f}") # 创建SHAP解释器 explainer = shap.TreeExplainer(rf, feature_perturbation="tree_path_dependent") # 计算SHAP值(返回列表结构,每个元素对应一个类别) shap_values = explainer.shap_values(X_test) # 可视化解释 shap.initjs() # 1. 特征重要性总览图 shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names, class_names=iris.target_names) # 2. 单个样本决策图(以测试集第一个样本为例) shap.decision_plot(explainer.expected_value[0], shap_values[0][0,:], features=X_test.iloc[0], feature_names=iris.feature_names) # 3. 特定特征依赖图(以petal length为例) shap.dependence_plot("petal length (cm)", shap_values[0], X_test, interaction_index=None) ``` ### 关键点说明 1. **SHAP解释器配置**:使用`TreeExplainer`时需指定`feature_perturbation="tree_path_dependent"`,这适用于基于树的模型[^1] 2. **多分类处理**:分类模型会返回多个类别的SHAP值列表,可通过索引访问具体类别 3. **可视化选择**: - `summary_plot`展示全局特征影响 - `decision_plot`显示单个预测决策过程 - `dependence_plot`分析特征间交互作用 ### 典型输出示例 ``` 准确率: 1.00 ``` ![SHAP Summary Plot](https://shap.readthedocs.io/en/latest/_images/iris_summary_plot.png)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值