DataX Web介绍及安装(DataX可视化界面)

下载地址

datax GitHub地址:https://github.com/alibaba/DataX.git

datax web Git地址:https://github.com/WeiYe-Jing/datax-web

datax 下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

datax web界面预览

在这里插入图片描述

datax web架构图

在这里插入图片描述

DataX Web用户手册

一、github下载master分支或者release版本到本地

DataX Web下载地址

二、安装DataX

  • 方法一、直接下载DataX工具包:DataX下载地址

    下载后解压至本地某个目录,进入bin目录,即可运行同步作业:

    $ cd  {YOUR_DATAX_HOME}/bin
    $ python datax.py {YOUR_JOB.json}
    

    自检脚本:

    python {YOUR_DATAX_HOME}/bin/datax.py {YOUR_DATAX_HOME}/job/job.json
    
  • 方法二、下载DataX源码,自己编译:DataX源码

    (1)、下载DataX源码:

    $ git clone git@github.com:alibaba/DataX.git
    

    (2)、通过maven打包:

    $ cd  {DataX_source_code_home}
    $ mvn -U clean package assembly:assembly -Dmaven.test.skip=true
    

    打包成功,日志显示如下:

    [INFO] BUILD SUCCESS
    [INFO] -----------------------------------------------------------------
    [INFO] Total time: 08:12 min
    [INFO] Finished at: 2015-12-13T16:26:48+08:00
    [INFO] Final Memory: 133M/960M
    [INFO] -----------------------------------------------------------------
    

    打包成功后的DataX包位于 {DataX_source_code_home}/target/datax/datax/ ,结构如下:

    $ cd  {DataX_source_code_home}
    $ ls ./target/datax/datax/
    bin		conf		job		lib		log		log_perf	plugin		script		tmp
    
  • 配置示例:从stream读取数据并打印到控制台

    • 第一步、创建创业的配置文件(json格式)

      可以通过命令查看配置模板: python datax.py -r {YOUR_READER} -w {YOUR_WRITER}

      $ cd  {YOUR_DATAX_HOME}/bin
      $  python datax.py -r streamreader -w streamwriter
      DataX (UNKNOWN_DATAX_VERSION), From Alibaba !
      Copyright (C) 2010-2015, Alibaba Group. All Rights Reserved.
      Please refer to the streamreader document:
          https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 
      
      Please refer to the streamwriter document:
           https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
       
      Please save the following configuration as a json file and  use
           python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
      to run the job.
      
      {
          "job": {
              "content": [
                  {
                      "reader": {
                          "name": "streamreader", 
                          "parameter": {
                              "column": [], 
                              "sliceRecordCount": ""
                          }
                      }, 
                      "writer": {
                          "name": "streamwriter", 
                          "parameter": {
                              "encoding": "", 
                              "print": true
                          }
                      }
                  }
              ], 
              "setting": {
                  "speed": {
                      "channel": ""
                  }
              }
          }
      }
      

      根据模板配置json如下:

      #stream2stream.json
      {
        "job": {
          "content": [
            {
              "reader": {
                "name": "streamreader",
                "parameter": {
                  "sliceRecordCount": 10,
                  "column": [
                    {
                      "type": "long",
                      "value": "10"
                    },
                    {
                      "type": "string",
                      "value": "hello,你好,世界-DataX"
                    }
                  ]
                }
              },
              "writer": {
                "name": "streamwriter",
                "parameter": {
                  "encoding": "UTF-8",
                  "print": true
                }
              }
            }
          ],
          "setting": {
            "speed": {
              "channel": 5
             }
          }
        }
      }
      
    • 第二步:启动DataX

      $ cd {YOUR_DATAX_DIR_BIN}
      $ python datax.py ./stream2stream.json 
      

      同步结束,显示日志如下:

      ...
      2015-12-17 11:20:25.263 [job-0] INFO  JobContainer - 
      任务启动时刻                    : 2015-12-17 11:20:15
      任务结束时刻                    : 2015-12-17 11:20:25
      任务总计耗时                    :                 10s
      任务平均流量                    :              205B/s
      记录写入速度                    :              5rec/s
      读出记录总数                    :                  50
      读写失败总数                    :                   0
      

三、Web部署

1.linux环境部署

linux环境部署

2.开发环境部署(或参考文档 Debug

2.1 创建数据库

执行bin/db下面的datax_web.sql文件(注意老版本更新语句有指定库名)

2.2 修改项目配置

1.修改datax_admin下resources/application.yml文件

#数据源
  datasource:
    username: root
    password: root
    url: jdbc:mysql://localhost:3306/datax_web?serverTimezone=Asia/Shanghai&useLegacyDatetimeCode=false&useSSL=false&nullNamePatternMatchesAll=true&useUnicode=true&characterEncoding=UTF-8
    driver-class-name: com.mysql.jdbc.Driver

修改数据源配置,目前仅支持mysql

# 配置mybatis-plus打印sql日志
logging:
  level:
    com.wugui.datax.admin.mapper: error
  path: ./data/applogs/admin

修改日志路径path

  # datax-web email
  mail:
    host: smtp.qq.com
    port: 25
    username: xxx@qq.com
    password: xxx
    properties:
      mail:
        smtp:
          auth: true
          starttls:
            enable: true
            required: true
        socketFactory:
          class: javax.net.ssl.SSLSocketFactory

修改邮件发送配置(不需要可以不修改)

2.修改datax_executor下resources/application.yml文件

# log config
logging:
  config: classpath:logback.xml
  path: ./data/applogs/executor/jobhandler

修改日志路径path

datax:
  job:
    admin:
      ### datax-web admin address
      addresses: http://127.0.0.1:8080
    executor:
      appname: datax-executor
      ip:
      port: 9999
      ### job log path
      logpath: ./data/applogs/executor/jobhandler
      ### job log retention days
      logretentiondays: 30
  executor:
    jsonpath: /Users/mac/data/applogs

  pypath: /Users/mac/tools/datax/bin/datax.py

修改datax.job配置

  • admin.addresses datax_admin部署地址,如调度中心集群部署存在多个地址则用逗号分隔,执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";
  • executor.appname 执行器AppName,每个执行器机器集群的唯一标示,执行器心跳注册分组依据;
  • executor.ip 默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 “执行器注册” 和 “调度中心请求并触发任务”;
  • executor.port 执行器Server端口号,默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
  • executor.logpath 执行器运行日志文件存储磁盘路径,需要对该路径拥有读写权限;
  • executor.logretentiondays 执行器日志文件保存天数,过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
  • executor.jsonpath datax json临时文件保存路径
  • pypath DataX启动脚本地址,例如:xxx/datax/bin/datax.py
    如果系统配置DataX环境变量(DATAX_HOME),logpath、jsonpath、pypath可不配,log文件和临时json存放在环境变量路径下。

四、启动项目

1.本地idea开发环境

  • 1.运行datax_admin下 DataXAdminApplication
  • 2.运行datax_executor下 DataXExecutorApplication

admin启动成功后日志会输出三个地址,两个接口文档地址,一个前端页面地址

五、启动成功

启动成功后打开页面(默认管理员用户名:admin 密码:123456)
http://localhost:8080/index.html#/dashboard

六、集群部署

  • 调度中心、执行器支持集群部署,提升调度系统容灾和可用性。
  • 1.调度中心集群:

    DB配置保持一致;

    集群机器时钟保持一致(单机集群忽视);

  • 2.执行器集群:

    执行器回调地址(admin.addresses)需要保持一致;执行器根据该配置进行执行器自动注册等操作。

    同一个执行器集群内AppName(executor.appname)需要保持一致;调度中心根据该配置动态发现不同集群的在线执行器列表。

常见问题

部署过程中遇到的常见问题,其解决方式可参考如下这篇博文:

https://blog.csdn.net/axq19910228/article/details/127730889

一. DataX3.0 概览  DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。  设计理念  为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。  当前使用现状  DataX 在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了 6 年之久。目前每天完成同步 8w 多道作业,每日传输数据量超过 300TB。  此前已经开源 DataX1.0 版本,此次介绍为阿里巴巴开源全新版本 DataX3.0,有了更多更强大的功能和更好的使用体验。Github 主页地址:https://github.com/alibaba/DataX。  二、DataX3.0 框架设计  DataX 本身作为离线数据同步框架,采用 Framework plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。  Reader:Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。  Writer: Writer 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。  Framework:Framework 用于连接 reader 和 writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。  三. DataX3.0 插件体系  经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入。DataX 目前支持数据如下:  DataX Framework 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。详情请看:DataX 数据源指南  四、DataX3.0 核心架构  DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。  核心模块介绍:  DataX 完成单个数据同步的作业,我们称之为 Job,DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。  DataXJob 启动后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。  切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup (任务组)。每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发数量为5。  每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader>Channel>Writer 的线程来完成任务。 标签:数据同步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值