mysql性能调优工具推荐:分析参数配置及给出优化建议;awr报告;慢日志分析等

本文介绍了如何使用MySQLTuner-perl脚本进行数据库配置检查,以及如何通过tuning-primer.sh和PerconaToolkit中的工具如pt-variable-advisor和pt-query-digest来分析MySQL的慢查询,提供详细的统计和查询优化建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MySQLTuner-perl

wget https://raw.githubusercontent.com/major/MySQLTuner-perl/master/mysqltuner.pl

./mysqltuner.pl --socket /var/lib/mysql/mysql.sock

tuning-primer.sh

注意调整生成后的 ~/.my.cnf文件中的内容格式,不用覆盖

[root@localhost ~]# wget https://launchpad.net/mysql-tuning-primer/trunk/1.6-r1/+download/tuning-primer.sh

./tuning-primer.sh 

pt-variable-advisor

[root@localhost ~]# wget https://www.percona.com/downloads/percona-toolkit/3.0.13/binary/redhat/7/x86_64/percona-toolkit-3.0.13-re85ce15-el7-x86_64-bundle.tar

[root@localhost ~]# yum install percona-toolkit-3.0.13-1.el7.x86_64.rpm 

[root@localhost ~]# pt-variable-advisor localhost --socket /var/lib/mysql/mysql.sock

pt-qurey-digest分析慢日志

安装同 pt-variable-advisor

1)直接分析慢查询文件:

pt-query-digest /var/lib/mysql/slowtest-slow.log > slow_report.log

2)分析最近12小时内的查询:

pt-query-digest --since=12h /var/lib/mysql/slowtest-slow.log > slow_report2.log

3)分析指定时间范围内的查询:

pt-query-digest /var/lib/mysql/slowtest-slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log

4)分析指含有select语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' /var/lib/mysql/slowtest-slow.log> slow_report4.log

5)针对某个用户的慢查询

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' /var/lib/mysql/slowtest-slow.log> slow_report5.log

6)查询所有所有的全表扫描或full join的慢查询

pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' /var/lib/mysql/slowtest-slow.log> slow_report6.log

结果解读:

第一部分:总体统计结果

    Overall:总共有多少条查询

    Time range:查询执行的时间范围

    unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询

    total:总计

    min:最小

    max:最大

    avg:平均

    95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值

    median:中位数,把所有值从小到大排列,位置位于中间那个数

第二部分:查询分组统计结果

    Rank:所有语句的排名,默认按查询时间降序排列,通过--order-by指定

    Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值)

    Response:总的响应时间

    time:该查询在本次分析中总的时间占比

    calls:执行次数,即本次分析总共有多少条这种类型的查询语句

    R/Call:平均每次执行的响应时间

    V/M:响应时间Variance-to-mean的比率

    Item:查询对象

第三部分:每一种查询的详细统计结果

    ID:查询的ID号,和上图的Query ID对应

    Databases:数据库名

    Users:各个用户执行的次数(占比)

    Query_time distribution :查询时间分布, 长短体现区间占比。

    Tables:查询中涉及到的表

    Explain:SQL语句

links:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值