DeepSeek、Qwen、ChatGLM 的 Transformer 架构与预训练特性

DeepSeek、Qwen、ChatGLM 的 Transformer 架构与预训练特性

1. DeepSeek:基于 Transformer 的混合专家模型
  • 架构基础:DeepSeek-R1(671B 参数)基于 Transformer 架构,采用自注意力机制和多层编码器-解码器结构,支持长文本理解和复杂推理12
  • 预训练流程
    1. 海量数据预训练:使用互联网文本、书籍、代码等无监督数据,通过自回归生成(预测下一个词)学习语言通用模式1
    2. 监督微调(SFT):以高质量指令数据(如问答对)优化任务适配性,例如对话生成和代码编写1
    3. 奖励建模与强化学习(RLHF):通过人类偏好数据训练奖励模型(RM),结合 PPO 算法对齐生成内容的安全性和有用性1
  • 技术亮点
    • 混合专家(MoE)架构:动态激活 37B 参数(总参数 671B),提升推理效率2
    • 多任务优化:支持文本生成、翻译、代码生成等任务,评测中在数学(MATH-500 97.3% Pass@1)和代码(Codeforces 2029 评分)任务表现突出2

2. Qwen:基于 Transformer 的中文优化模型
  • 架构基础:Qwen 基于标准 Transformer 解码器,采用多头自注意力机制和残差连接,支持长上下文窗口(如 128K Token)34
  • 预训练流程
    1. 中文语料预训练:以中文文本为主,融合多语言数据,通过自监督学习(如掩码语言建模)构建基座模型4
    2. 监督微调:使用高质量指令数据优化对话和生成能力,适配中文成语、文化偏好3
  • 技术亮点
    • 旋转位置编码(RoPE):增强位置感知能力,提升长文本生成连贯性3
    • 低显存优化:支持量化(如 Q4_K_M)和 Flash Attention 2.0,降低端侧部署成本3

3. ChatGLM:基于 Transformer 的对话专用模型
  • 架构基础:ChatGLM 基于 Transformer 解码器,专注对话任务优化,通过自注意力机制捕捉多轮对话的上下文依赖56
  • 预训练流程
    1. 对话数据预训练:使用社交媒体、客服对话等语料,强化对话连贯性和逻辑性6
    2. 多轮对话建模:引入对话历史记忆机制,支持长对话的语义一致性5
  • 技术亮点
    • 情感分析与动态生成:优化对话中的情绪识别和个性化回复生成6
    • 低资源适配:支持小样本微调(如 5 条标注数据训练会议纪要生成)6

总结对比

模型架构基础预训练特点优势场景
DeepSeekTransformer + MoE混合专家架构、多任务强化学习数学推理、代码生成、大规模工业部署
Qwen标准 Transformer中文语料优化、长上下文窗口中文文本生成、垂直领域问答
ChatGLMTransformer 解码器对话历史建模、情感分析智能客服、多轮对话系统

核心结论

  • DeepSeek、Qwen、ChatGLM 均基于 Transformer 架构,但设计侧重点不同。
  • DeepSeek 通过 MoE 架构提升计算效率,Qwen 专注中文优化,ChatGLM 强化对话任务适配性。
  • 三者均通过预训练(海量无监督数据)和微调(高质量标注数据)实现任务适配,但技术路径各有创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值