DeepSeek、Qwen、ChatGLM 的 Transformer 架构与预训练特性
1. DeepSeek:基于 Transformer 的混合专家模型
2. Qwen:基于 Transformer 的中文优化模型
3. ChatGLM:基于 Transformer 的对话专用模型
总结对比
模型 | 架构基础 | 预训练特点 | 优势场景 |
---|---|---|---|
DeepSeek | Transformer + MoE | 混合专家架构、多任务强化学习 | 数学推理、代码生成、大规模工业部署 |
Qwen | 标准 Transformer | 中文语料优化、长上下文窗口 | 中文文本生成、垂直领域问答 |
ChatGLM | Transformer 解码器 | 对话历史建模、情感分析 | 智能客服、多轮对话系统 |
核心结论:
- DeepSeek、Qwen、ChatGLM 均基于 Transformer 架构,但设计侧重点不同。
- DeepSeek 通过 MoE 架构提升计算效率,Qwen 专注中文优化,ChatGLM 强化对话任务适配性。
- 三者均通过预训练(海量无监督数据)和微调(高质量标注数据)实现任务适配,但技术路径各有创新。