- 博客(27)
- 收藏
- 关注
转载 生成模型与判别模型
生成模型与判别模型监督学习的任务就是学习一个模型,应用这个模型,对给定的输入预测相应的输出。这个模型一般为决策函数:Y=f(X)或 条件概率分布:P(Y|X)。监督学习的学习方法可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别叫生成模型和判别模型。 生成方法定义由数据学习联合
2015-03-26 21:52:08 332
转载 EM算法
EM算法本文试图用最简单的例子、最浅显的方式说明EM(Expectation Maximization)算法的应用场景和使用方法,而略去公式的推导和收敛性的证明。以下内容翻译自《Data-Intensive Text Processing with MapReduce》。Maximum Likelihood EstimationMaximum Likelihood Esti
2015-03-01 18:20:48 485
原创 如何判断一个函数是否是凸的
设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。
2015-03-01 17:03:16 11432 1
转载 [转载]python中package机制的两种实现方式
转自http://www.cnblogs.com/phinecos/archive/2010/05/07/1730027.html当执行import module时,解释器会根据下面的搜索路径,搜索module1.py文件。1) 当前工作目录2) PYTHONPATH中的目录3) Python安装目录 事实上,模块搜索是在保存在sys.p
2015-01-28 00:32:38 330
原创 设计模式之状态模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: Edgar这是状态模式的一个应用场景。(具体故事情节请见《设计模式之禅》)"""class Context(object): def __init__(self): self.open_State = Open_State(self)
2014-10-05 21:21:05 445
原创 设计模式之参观者模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: Edgar这是参观者模式的一个应用场景。(具体故事情节请见《设计模式之禅》)·参观者模式能为不同的类提供接口一致,但具体实现不同的方法。即为不同的被访问提出量身定制的反馈。"""class Employee(object): def __init__
2014-10-05 19:41:48 889
原创 设计模式之门面模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: Edgar这是门面模式的一个应用场景。(具体故事情节请见《设计模式之禅》)·门面模式把一套方法封装起来,用户不需要知道具体的实现细节。"""class LetterProcessImpl(object): def writeContext(self, cont
2014-10-04 17:34:08 455
原创 设计模式之观察者模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: Edagr这是观察者模式的一个应用场景。(具体故事情节请见《设计模式之禅》)·观察者模式使得被观察者的行为能引起观察者的反应。"""class Observable(object): def __init__(self): self.observ
2014-10-04 16:49:43 371
原创 设计模式之适配器模式
# -*- coding: utf-8 -*-"""@author: Edgar这是适配器模式的一个应用场景。(具体故事情节请见《大话设计模式》)·适配器模式使得原本接口不统一的类能被统一调度。"""class Center(object):#中锋类 def __init__(self, name): self.name = name
2014-10-04 15:10:58 333
原创 设计模式之职责链模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: Edgar这是职责链模式的一个应用场景。(具体故事情节请见《大话设计模式》)·职责链模式下,客户端只需要传递信号给系统,不需要知道系统安排谁处理,也不需要知道这个人怎么处理信号的。"""class AbsManager(object): def __init_
2014-10-04 10:48:00 339
原创 设计模式之命令模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""这是命令模式的一个应用场景。(具体的故事情节请见《设计模式之禅》)@author: 涛"""class AbsGroup(object): def __init__(self): self.name = self.__class__.__name__
2014-10-04 00:08:45 383
原创 设计模式之中介者模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""这是中介者模式的一个应用场景。(参考了《设计模式之禅》)·中介者模式中每个模块只负责自己的业务逻辑,不属于自己的则丢给中介者来处理。(迪米特原则,单一职责原则,开闭原则)"""class AbsMediator(object): #中介部门,沟通采购、销售、库存部门 def _
2014-10-03 17:50:06 370
原创 设计模式之代理模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""@author: 涛这是代理模式的一个应用场景。(参考了《设计模式之禅》)·代理模式的主要作用是在委托类的方法被执行的前后做预处理或善后处理。比如此场景中玩家委托游戏代练帮他升级,每升一级玩家要付钱给代练者。·这样做可以让产品设计更符合逻辑,我想架构师的任务之一就是设计一个符合人类思考逻
2014-10-03 15:31:05 326
原创 设计模式之策略模式
# -*- coding: utf-8 -*-"""这是策略模式的一个应用场景(参考了《大话设计模式》)。高质量程序:简洁、可修改、可扩展、可复用。此处使用了一个上下文类,作为后台与客户端的中间人,这样一来当客户需要修改优惠策略时只修改上下类中的优惠策略选项即可,故程序具有可修改性;如果需要添加新的优惠策略,只需要添加新的具体策略类即可,故程序具有可扩展性。note:1.策略
2014-09-17 21:16:57 380
原创 设计模式之组合模式
#-*- coding:gbk -*-#-*- coding:utf-8 -*-"""这是组合模式的一个应用场景。阿涛游历江湖,遇到伏火教的人,向知情人打探消息后决定记录其组织结构的数据,以便以后分析。由于对伏火教的情报掌握有限,因此阿涛决定先忽略总教和分教的区别,于是采用了组合模式进行记录。note:1.当你发现需求中是体现部分与整体层次的结构时,以及你希望用户可以忽略组合对象
2014-09-17 20:01:45 292
原创 设计模式之简单工厂模式与单例模式
# -*- coding: gbk -*-# -*- coding: utf-8 -*-"""这是简单工厂模式和单例模式的一个应用场景(来自《大话设计模式》)。高质量程序:简洁、可修改、可复用、可扩展。此处使用简单工厂模式实现一个计算器,在需要修改具体运算类时只需修改相应的那个类,故具备可修改性;实现好的具体运算类可被其他程序复用,故具备可复用性;当需要增加新运算方法时只需要添加
2014-09-17 19:54:44 481
原创 设计模式之备忘录模式
#-*- coding:gbk -*-#-*- coding:utf-8 -*-"""这是备忘录模式的一个应用场景。李逍遥打完BOSS升级后,玩家阿涛觉得不满意,希望重新打一次。幸好打之前有存档,于是读档后又打了一次BOSS,结果这一次被BOSS给打死了,无奈之下只好重新来过。note:1.备忘录模式能记录对象状态,在需要的时候恢复之,常用于新状态无效时将状态复原。"""i
2014-09-14 18:16:19 348
原创 设计模式之建造者模式
# -*- coding: utf-8 -*-"""建造者模式的Python实现"""from abc import ABCMeta, abstractmethod#抽象建造者,此类规定具体建造者需要实现的方法class AbcBuilder(object): __metaclass__ = ABCMeta #product是用户需要的产品 def
2014-09-13 02:16:20 453
原创 机器学习--学习笔记(四)--支持向量机
1. 决策式①是SVM的决策边界函数。其中,m为样本数,n为特征数,是y=1时对的线性近似,其形状如图①。是y=0对的线性近似,其形状如图②。 图① 图②一般而言,要求式①满足如下条件:s.t. 这样一来,求决策边界就等价于以上述两个条件为前提,求最小值了。求得θ后,就可以据此对新数据做决策,即;。 2. 核
2014-05-30 23:57:18 608
原创 机器学习--学习笔记(三)--神经网络
1.神经网络模型 神经网络由一个输入层、输出层以及一个或多个隐藏层组成,模型图如下所示。 图1其中,Layer1为输入层,Layer2为隐藏层,Layer3为输出层。 2.预测:前向传播算法 如果把输入层设为第1层,则第1层隐藏层为第
2014-05-30 01:38:56 1000
原创 机器学习--学习笔记(二)
建立机器学习系统的一个推荐流程(部分):1. 从一个你能快速实现的算法开始,在此基础上做训练并进行交叉验证(注1)。2. 画出学习曲线,并决定使用更多数据,还是更多特征或者减少特征等等(选择策略参照学习笔记一)。3. 做错误分析。 错误分析手动观察决策模型判断错误的数据,从中获得可能有效的改进策略。比如观察模型决策失误的数据往往是什么类别的?这类数据有什么特征
2014-05-28 23:40:27 659
原创 机器学习--邮件过滤
这篇文章将以Spam classifier为主题展开 1. 怎么获得一个更好的垃圾邮箱分类器? 1.1 使用更多训练数据。 1.2 从邮件头获得更精细的特征。 1.3 从邮件体获得更精细的特征。 1.4 使用更高级的算法检测拼写错误。
2014-05-28 22:52:43 959
原创 机器学习--学习资源汇总
1.Coursera 公开课--Andrew ML公开课https://class.coursera.org/ml-0052.
2014-05-28 22:01:12 531
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人