Exponential families

本文介绍了指数族分布的基础概念,列举了常见的指数族成员,并以高斯分布为例详细解析了如何将其转化为指数族的通用形式。此外,还探讨了如何利用指数族的形式寻找共轭先验分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Exponential families


·EF包括很多常用分布,比如:

Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta。

使用EF描述数据,可以让我们更容易找到共轭先验。

 

·其通用形式如下:

 

 

·各项含义如下:

 

注意,t(x)h(x)可以不是关于x的函数。

 

下面以高斯分布作为例子,讲解其EF通用形式和对应的共轭先验

·高斯分布转换成EF通用形式:

 

 

·可以转换成另一种形式

 

这种形式更适用于发现共轭先验(与图中式(34)有相同形式的参数的先验分布),因为把只含参数的部分单独放在一块了。

 

·由上图的式(34)可知共轭先验应当满足以下形式

 

由此可知,共轭先验也是高斯分布。

 

·根据“后验=先验*似然函数”可得后验分布的natural parameter为:

 

其中

 

 

·由此可得后验概率的期望和方差

 


·代入对期望、方差的先验假设后,可得:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值