Variational Inference

本文介绍了变分推断(VI)的基本概念及其在复杂后验概率计算中的应用。通过选择一个简单的近似分布并优化其参数使之接近真实分布,从而解决复杂分布难以直接计算的问题。文章还详细解释了如何利用Kullback-Leibler散度评估两个分布间的相似度,并通过最大化证据下界(ELBO)来实现KL散度的最小化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Variational Inference


·我们常常需要计算后验概率:
其中z代表模型参数(包括隐变量),x代表数据,α是超参数。

·可是很多复杂的后验概率难以直接计算。

·针对这一问题,我们先选择一个简单分布,优化其参数使其近似复杂分布,然后用简单分布作为复杂分布的替代品。这就是VI的主要思想。

·设p是原始分布,q是近似分布,评估两分布近似程度的指标之一是Kullback-Leibler Divergence:


如果采用KL(p||q)作为评价指标,则变成“expectation propagation”算法。此处选择KL(q||p)是因为对q求期望更简单一些。

·我们的目标就是最小化KL(q||p)。注意到,KL(q||p)可以如下展开:


括号里的内容被称为evidence lower bound(ELBO),因此最小化KL(q||p)相当于最大化ELBO。

·将其称为ELBO是因为:


这里用到了Jensen's inequality:


可以看出来,ELBO代表了似然函数的下限。由此可知,最小化KL(q||p)相当于最大化似然函数的下限。

·最小化KL(q||p)有很多种方法,其中mean field是比较常用的一种(注意到VI代表一种思想,基于这一思想,有很多种优化模型参数的算法)。使用这种方法时,我们需要先假设参数之间是相互独立的:



·基于上述假设,我们开始最大化ELBO(最小化KL(q||p))。

·首先,回顾下chain rule:



·然后将独立假设代入E[logq(Z)]可得:



·根据上面两步,将ELBO分解成以下形式:


·接下来,我们需要迭代地逐个优化参数,每次考虑优化参数:


(对-k取期望,意味着计算期望值时,假设是常数)


·此时,我们得到了以为参数的目标函数,我们的目标是使其最大化,因此需要对其求导:



·注意到式(24)中,条件概率可以转换成联合概率除以条件,而条件与无关,因此也可以按照下式更新q():


根据情况,选择式(24)或(25)中的某一条作为更新式子(同一次迭代过程中,必须使用同一条式子)。需要注意的是,根据原始分布p的不同,同一条迭代公式的计算方法也有所不同。


·最后,在迭代收敛后使用q替代p。


·注意到,我们使用其他点提供的关于的信息来给赋新值,且使用时对各个点提供的信息做了平均(期望),因此此方法称为mean field。


·参考资料:

1.普林斯顿大学课件

http://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/variational-inference-i.pdf

2.Machine Learning A Probabilistic Perspective第21章


变分推断是一种用于近似求解复杂概率模型后验概率分布的技术。在贝叶斯统计中,我们希望从观测数据推断出最有可能的模型参数。然而,在大多数情况下,由于模型复杂性和计算复杂度的限制,我们很难直接计算后验分布。这时候,变分推断能够通过引入一个简化的概率分布来近似后验分布。 变分推断的基本思想是为原始贝叶斯问题构造一个等价的变分问题,并通过最小化两者之间的差异来求解。具体而言,它假设一个简单的参数化概率分布(即变分分布),并试图通过调整分布参数来使其尽可能接近真实后验。 为了找到最优的变分分布,变分推断利用变分推理和优化方法进行迭代求解。在每次迭代中,它通过最大化变分推理下界来逼近后验分布。这个下界称为证据下界或ELBO(证据下界)。 变分推断的优点在于它可以同时处理大规模和高复杂度的模型,而且能够处理连续和离散变量的混合问题。它还可以灵活地处理缺失数据并处理不同类型数据之间的关联。 然而,变分推断也有其局限性。首先,变分分布选择是一个挑战,如果选择的分布偏离真实后验分布,可能导致近似结果的偏差。其次,变分推断通常需要计算复杂度高且对初始参数值敏感的迭代求解。因此,它可能无法在所有情况下提供最优的近似解。 综上所述,变分推断是一种强大的近似推理方法,可以用于处理复杂概率模型的后验分布。它在计算效率和模型灵活性方面具有一定优势,但同时也存在某些局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值