0x00背景
我司报表平台大量ETL任务原来采用hive on tez引擎执行批计算任务,存在资源不足执行慢等问题急需解决。
经调研及测试,我们发现spark 3.0引擎在sql兼容性及执行速度等方面有巨大优化,平均执行速度是hive的2-10倍,因此我们计划通过spark3.0进行离线加速工作。
0x01架构
- kyuubi 1.3.0
- spark 3.1.2 Scala 2.12
- Submarine:Spark Sercurity 0.6.0 对接ranger进行库表权限
- 基于kyuubi 1.3.0 开发自定义账号验证器
- python 3.6.0 above
- jdk 1.8
- zookeeper 2.4.3
以上为我司报表平台Spark引擎的架构简图,从图中可以看出我们采用网易开源的Kyuubi替换spark官方sts用于session的管理与转发。
在新架构研发中我们遇到了几个小难点需要解决:
- spark shuffle service的部署
- kyuubi 登陆验证开发及基于ranger库表权限控制
- kyuubi+spark 任务调优
- 报表平台任务迁移方案及sql兼容处理等
0x02 spark shuffle service的部署
我司计算调度主要采用yarn平台,该平台上跑了多种计算引擎的任务,spark shuffle service当前属于nodemanager的一个辅助服务,因此需要修改配置文件并重启nodemanager。
Spark系统在运行含shuffle过程的应用时,Executor进程除了运行task,还要负责写shuffle 数据,给其他Executor提供shuffle数据。
当Executor进程任务过重,导致GC而不能为其他Executor提供shuffle数据时,会影响任务运行。
这里实际上是利用External Shuffle Service 来提升性能,External shuffle Service是长期存在于NodeManager进程中的一个辅助服务。
通过该服务 来抓取shuffle数据,减少了Executor的压力,在Executor GC的时候也不会影响其他 Executor的任务运行。
启用方法:
1. 在NodeManager中启动External shuffle Service。
a. 在“yarn-site.xml”中添加如下配置项:
<property>
<name>yarn.nodemanager.aux-services</name>
<value>spark_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
<value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property>
<property>
<name>spark.shuffle.service.port</name>
<value>7337</value>
</property>
配置参数描述
yarn.nodemanager.aux-services:NodeManager中一个长期运行的辅助服务,用于提升Shuffle 计算性能。
yarn.nodemanager.auxservices. spark_shuffle.class : NodeManager中辅助服务对应的类。
spark.shuffle.service.port :Shuffle服务监听数据获取请求的端口。可选配置,默认值为“7337”。
b. 添加依赖的jar包
拷贝“${SPARK_HOME}/yarn/spark-*-yarn-shuffle.jar”到“$ {HADOOP_HOME}/share/hadoop/yarn/lib/”目录下。
c. 重启NodeManager进程,也就启动了External shuffle Service。
2. Spark应用使用External shuffle Service。
在“spark-defaults.conf”中必须添加如下配置项:
spark.shuffle.service.enabled true
spark.shuffle.service.port 7337
说明 :
<