四面体体积公式

已知四面体顶点坐标分别为(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4),可以通过如下两种方法求四面体体积:

1. 利用向量的混和积

     过一顶点的三向量设为abc,所求四面体的体积就是|(a×bc|/6。

    此处假设(x1,y1,z1)为四面体顶点,则

    a = (x2 - x1, y2 - y1,  z2 -z1)

    b = (x3 - x1, y3 - y1, z3 - z1)

    c = (x4 - x1, y4 - y1, z4 - z1)

    将上述向量带入上面公式即可求出四面体体积

 

2. 直接利用行列式计算

                                     | 1     1     1     1    |

          v     =1/6 * det    | x1    x2   x3    x4 |

                                     | y1   y2   y3   y4  |

                                     | z1   z2    z3   z4  |

原文链接:https://blog.csdn.net/rabbit729/article/details/2740217



### 计算四面体体积的方法 #### 使用顶点坐标计算四面体体积 当已知四面体四个顶点的坐标 \((x_1, y_1, z_1)\), \((x_2, y_2, z_2)\), \((x_3, y_3, z_3)\), 和\((x_4, y_4, z_4)\) 时,可以利用行列式的性质来表达四面体体积 \(V\) 的公式: \[ V = \frac{1}{6} |det(\vec{AB}, \vec{AC}, \vec{AD})| \] 其中向量 \(\vec{AB}\), \(\vec{AC}\), 和 \(\vec{AD}\) 可由给定的顶点坐标构建而成。具体来说, - 向量 \(\vec{AB}=(x_2-x_1, y_2-y_1, z_2-z_1)\), - 向量 \(\vec{AC}=(x_3-x_1, y_3-y_1, z_3-z_1)\), - 向量 \(\vec{AD}=(x_4-x_1, y_4-y_1, z_4-z_1)\)[^2]。 上述公式的绝对值表示取行列式的结果之后再取正值,因为体积是一个非负数。 #### 利用二面角和面积计算四面体体积 另一种方法涉及到了几何中的概念——即通过考虑两个相邻侧面之间的夹角以及它们各自的面积来进行计算。该方法指出,如果知道两相交边形成的二面角及其对应的两侧面,则可按照下面的方式得到体积: \[ V=\frac{\sin(\theta)}{3l}(A_{i} A_{j})^{*} \] 这里 \(A_i\) 和 \(A_j\) 表示构成二面角 θ 的那两个三角形区域;\(l\) 是共同棱上的长度;而星号(*)代表乘法操作[^1]。 值得注意的是,在实际应用过程中可能更倾向于采用基于坐标的算法,因为它不需要额外测量角度或者侧面积,并且可以直接从三维空间内的位置数据出发完成整个运算过程。 ```python import numpy as np def tetrahedron_volume(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4): matrix = [[x2 - x1, y2 - y1, z2 - z1], [x3 - x1, y3 - y1, z3 - z1], [x4 - x1, y4 - y1, z4 - z1]] det_value = abs(np.linalg.det(matrix)) volume = (1/6)*det_value return volume ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值