在训练出的模型中, 预测的值不是0就是1, 就是说数据被完美分开了, 这是有问题的
简单说, 追直观的问题就是在你使用模型预测的时候, 怎么选择decision boundary, 0.5? 可是没有那条线了, 就是不管你0.5 还是0.1 0.2 0.8, 结果在训练集中都是一样的,但在预测时候就会有问题
这种情况下,一般会有过大系数的问题, 有的系数很大很大, 可以是用 正则化,对较大的系数施加惩罚, Lasso 或者岭回归, 可能会解决问题
另一只情况,就是多重共线性的问题, 可以查看VIF去 去除哪些VIF较大的变量