逻辑回归 glm.fit: fitted probabilities numerically 0 or 1 occurred

 

在训练出的模型中, 预测的值不是0就是1, 就是说数据被完美分开了, 这是有问题的

 

简单说, 追直观的问题就是在你使用模型预测的时候, 怎么选择decision boundary, 0.5? 可是没有那条线了, 就是不管你0.5 还是0.1 0.2 0.8, 结果在训练集中都是一样的,但在预测时候就会有问题

 

这种情况下,一般会有过大系数的问题, 有的系数很大很大, 可以是用 正则化,对较大的系数施加惩罚, Lasso 或者岭回归, 可能会解决问题

 

另一只情况,就是多重共线性的问题, 可以查看VIF去 去除哪些VIF较大的变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值