蔡高厅高等数学12-函数的极限与无穷小的关系

视频12 函数极限与无穷小的关系
定理 lim(fx) = A <==> f(x) = A + a(x) , 且 lima(x)=0
证明:
充分性
必要性
三、无穷小的性质
1、有限个无穷小的代数和任然是无穷小
只证明两个无穷小的情形
证明:


2、有界函数与无穷小的乘积仍然是无穷小
证明:


对于一个常数 C,f(x)=C ,有界函数,
对于lima(x) (x->x0)  = 0, 在N(x0)内, a(x) 是有界函数, 所以有
1 常数与无穷小的乘积任然是无穷小。
2 两个无穷小的乘积还是无穷小(有限个无穷小的乘积仍然是无穷小)
3 limf(x) = A <>0 , lima(x) = 0
则 lim a(x) / f(x)  是无穷小


证明,只需要证明1 / f(x)是有界函数

阅读更多
文章标签: 高等数学 蔡高厅
个人分类: 高等数学学习笔记
上一篇蔡高厅高等数学11-函数极限的性质和极限的运算
下一篇spring-cloud学习3之注册服务提供者
想对作者说点什么? 我来说一句

高等数学 蔡高厅 天津大学出版

2017年04月21日 10.79MB 下载

蔡高厅 高等数学上 下两册

2010年03月20日 10.77MB 下载

没有更多推荐了,返回首页

关闭
关闭