视频12 函数极限与无穷小的关系
定理 lim(fx) = A <==> f(x) = A + a(x) , 且 lima(x)=0
证明:
充分性
必要性
三、无穷小的性质
1、有限个无穷小的代数和任然是无穷小
只证明两个无穷小的情形
证明:
2、有界函数与无穷小的乘积仍然是无穷小
证明:
对于一个常数 C,f(x)=C ,有界函数,
对于lima(x) (x->x0) = 0, 在N(x0)内, a(x) 是有界函数, 所以有
1 常数与无穷小的乘积任然是无穷小。
2 两个无穷小的乘积还是无穷小(有限个无穷小的乘积仍然是无穷小)
3 limf(x) = A <>0 , lima(x) = 0
则 lim a(x) / f(x) 是无穷小
证明,只需要证明1 / f(x)是有界函数
定理 lim(fx) = A <==> f(x) = A + a(x) , 且 lima(x)=0
证明:
充分性
必要性
三、无穷小的性质
1、有限个无穷小的代数和任然是无穷小
只证明两个无穷小的情形
证明:
2、有界函数与无穷小的乘积仍然是无穷小
证明:
对于一个常数 C,f(x)=C ,有界函数,
对于lima(x) (x->x0) = 0, 在N(x0)内, a(x) 是有界函数, 所以有
1 常数与无穷小的乘积任然是无穷小。
2 两个无穷小的乘积还是无穷小(有限个无穷小的乘积仍然是无穷小)
3 limf(x) = A <>0 , lima(x) = 0
则 lim a(x) / f(x) 是无穷小
证明,只需要证明1 / f(x)是有界函数