【武忠祥高等数学基础课笔记】第一章 函数、极限、连续

目录

第一节 函数

复合函数

反函数

函数的周期性

​函数的有界性

第二节 极限

极限的概念

1.数列的极限

2.函数的极限

极限的性质

1.有界性

​2.保号性

3.极限值与无穷小之间的关系

极限存在准则

1.夹逼准则

2.单调有界准则

无穷小量

1.无穷小量的概念

2.无穷小的比较

3.无穷小的性质

无穷大量

1.无穷大量的概念

2.常用的一些无穷大量的比较

3.无穷大的性质

4.无穷大量与无界变量的关系

5.无穷大量与无穷小量的关系

极限的例题

利用极限的概念、性质及存在准则

1.利用基本极限求极限

2.利用等价无穷小代换求极限

3.利用有理运算法则求极限

4.利用洛必达法则求极限

5.利用泰勒公式求极限

6.利用夹逼原理求极限

7.利用单调有界准则求极限

8.利用定积分定义求极限

无穷小量阶的比较

第三节 函数的连续性

内容概要

1.连续性的概念

2.间断点的定义及其分类

3.连续性的运算和性质

4.闭区间上连续函数的性质

常考题型与典型例题

1.讨论函数连续性及间断点的类型

2.有关闭区间上连续函数性质的证明题


第一节 函数

复合函数

两个函数能不能复合的核心:外层定义域和内层值域的交只要非空就能复合,否则就不能复合

反函数

 

函数的周期性

函数的有界性


第二节 极限

极限的概念

1.数列的极限

 

2.函数的极限

 

 

 

 

极限的性质

1.有界性

2.保号性

3.极限值与无穷小之间的关系

lim f(x)=A <=> f(x)=A+a(x)  其中lim a(x)=0

极限存在准则

1.夹逼准则

常用在求n项和的极限

2.单调有界准则

单调有界数列必有极限

     单调增、有上界的数列必有极限

     单调减、有下届的数列必有极限

常用在:递推关系

例:

无穷小量

1.无穷小量的概念

2.无穷小的比较

3.无穷小的性质

有限个无穷小的和仍是无穷小

### 回答1: 武忠祥660题23年pdf是指具有660道数学题的题集,由武忠祥老师编写的,涵盖了23年的题目。这份pdf题集是供学生们进行数学学习和练习使用的资料。 武忠祥老师以其数学教育经验和教学成果而闻名。他对于题目设计和解题技巧有着独到的见解,能够帮助学生们提高数学思维能力和解题能力。他编写的题集通常涵盖了各个年级和难度的题目,能够适应不同层次的学生需求。 23年的题目涵盖了相当长的时间跨度,这意味着学生们可以从中得到丰富的练习机会。通过不断地解决各种类型的题目,学生们可以不断巩固已学知识,提高应用能力,并且掌握解题技巧。这有助于学生们更好地应对考试,并在学业上有更好的表现。 这份题集以pdf格式发布,这就意味着学生们可以在电子设备上方便地使用和存储这些题目。学生们可以自主决定选择哪些题目进行练习,根据自己的需求和进度进行学习。同时,他们也可以通过随时查找和参考题集中的解答,深入理解每个题目的解题思路。 总之,武忠祥660题23年pdf是一份宝贵的数学学习资源。对于想要提高数学水平的学生来说,这是一个很好的学习和练习资料,可以帮助他们在数学领域取得更好的成绩。 ### 回答2: 武忠祥660题23年PDF是指武忠祥老师在23年间所编写的660道题目的PDF文件。武忠祥老师是一位数学教育界的知名人士,以其丰富的教学经验和高质量的教材而受到广大学生和家长的赞誉。 这份PDF文件包含了660道题目,主要涵盖了数学的各个方面,如代数、几何、概率与统计等。这些题目旨在帮助学生巩固和提高数学知识,培养其分析问题和解决问题的能力。武忠祥老师的题目设计独特,既有简单直观的题目,也有复杂有深度的题目,能够满足不同层次学生的需求。 使用这份PDF文件可以帮助学生系统地学习和掌握数学知识,考察自己的学习成果。每道题目都有详细的解析和答案,学生可以通过对比自己的解答与标准答案来评估自己的学习情况,并找出自己的不足之处,进一步提高。 武忠祥660题23年PDF不仅是一份优秀的学习资料,也是一份宝贵的备考资料。对于即将参加数学考试的学生来说,这份PDF文件可以帮助他们熟悉考试题型和难度,并提前进行针对性的复习,以取得更好的考试成绩。 总之,武忠祥660题23年PDF是一份具有很高教育价值的学习资料,对学生们的学习和备考都非常有帮助。相信通过认真使用这份资料,学生们的数学水平将会有显著的提高。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值