【深度学习】 第二章TensorFlow入门

本文介绍了TensorFlow 2.0的基础知识,包括如何创建常量、计算图、开启和关闭session,以及OP的基本操作如加减乘除。此外,还探讨了矩阵运算、随机数生成和Variable的使用,最后讲解了占位符的概念及其在执行图中的作用。内容涵盖了TensorFlow中变量的初始化、赋值以及图形的可视化。
摘要由CSDN通过智能技术生成


用的tensorflow版本为2.0的所有有些代码有所改动

1. TensorFlow介绍

在生活中如google图像搜索、谷歌翻译等都使用了tensorflow
在这里插入图片描述

2. 计算图session Tensor

在这里插入图片描述
实现下面的代码,核心过程如下:

import tensorflow as tf 
a=tf.constant(32) #创建常量
b=tf.constant(10) #创建常量
c=tf.add(a,b)
print(a)
print(b)
print(c)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看出来tensorflow只是将上面定义的tensor作为节点保存,没有具体的值,要想显示具体的值,需要开启session

  • 开启session
tf.compat.v1.disable_eager_execution() #因为安装的是高版本的,要想session能用必须先写这个

sess= tf.compat.v1.Session()
  • 关闭session
sess.close()

在这里插入图片描述
注意如果tensorflow如果是2.0版本下面无法运行的

import tensorflow as tf 
sess=tf.Session()
print(sess.run(a))
print(sess.run([a,b]))
print(sess.run([a,b,c]))

在这里插入图片描述
将session产生的结果保存在一个变量中,下面的py便是一个正常的数值

#将上面产生的结果保存在一个变量中
py_a=sess.run(a)
print(type(py_a))

py_r=sess.run([a,b,c])
print(type(py_r))
print(py_r[0],py_r[1],py_r[2])

在这里插入图片描述
在这里插入图片描述
tensor可以由各种各样的类型,如字符串、布尔值、列表、浮点型等转换
在这里插入图片描述

3. OP 矩阵 随机化 Variable

3.1 OP

op:tensorflow具有很多基本操作,这些操作定义为op

方法 返回值类型 参数 说明
算数运算符
.add() Tensor x, y, name=N 加法(若x,y都为tensor, 数据类型需一致, 以下所有x,y都如此)
.subtract() Tensor 同add 减法
.multiply() Tensor 同add 元素级乘法
.scalar_mul() Tensor scalar, x 标量*tensor
.div() Tensor 同add 除法(结果dtype同x,y)
.divide() Tensor 同add 同Python除法 int8, int16 --> float32 int32, int64 --> float64
.truediv() Tensor 同add 同上
.floordiv() Tensor 同add 结果向下取整, 但结果dtype与输入保持一致
.realdi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值