在本篇博客中,我们将从零开始实现一个计算机视觉中的物体检测任务。我们将使用 Python 和 PyTorch 框架,并使用一个简单的卷积神经网络(CNN)模型进行物体检测。我
## 1. 准备工作
首先,确保已经安装了以下库:
- Python 3.6 或更高版本
- PyTorch 1.0 或更高版本
- torchvision
- NumPy
- OpenCV
你可以使用以下命令安装这些库:
pip install torch torchvision numpy opencv-python
## 2. 数据集
我们将使用 [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 数据集。这是一个常用的计算机视觉数据集,包含 20 个类别的物体。你可以从 [这里](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar) 下载数据集。
下载并解压数据集后,我们将使用 torchvision 中的 `VOCDetection` 类来加载数据集:
from torchvision.datasets import VOCDetection