- 博客(239)
- 收藏
- 关注
原创 学习列表
pytorch 提速:预处理提速IO提速训练策略代码层面模型设计推理加速时间分析项目推荐扩展阅读pytorch节省显存删除loss混合精度对不需要反向传播的操作进行管理other用网页学习C++ : https://jupyter.org/trypyinstaller https://cloud.tencent.com/developer/news/368292小波分析numbadask软件工程模式识别tusharehttps://github.com/Pa
2021-04-08 23:15:51
765
原创 ubuntu24使用apt安装VS-code-server code-server
手动添加官方仓库,之后用 apt 安装 / 更新,适合想精确控制版本的场景。bash运行# 1. 安装依赖# 2. 导入官方 GPG 密钥curl -fsSL https://code-server.dev/install.sh | sh -s -- --dry-run # 预览(可选)# 3. 添加 code-server 官方 apt 源# 4. 更新源并安装# 5. 启用服务(可选)
2026-01-11 15:45:52
227
原创 ubuntu24 安装vscode
Ubuntu 24.04 安装 VSCode 首选官方 APT 仓库方式,核心命令是「添加密钥→添加源→apt install code」;安装后可通过验证,中文界面需安装语言包扩展;该方式支持自动更新,比手动下载 deb 包更省心。如果需要配置 VSCode 的 Python/AI 开发环境(如安装插件、关联 Ubuntu 的 Python 解释器),我可以给出针对性的配置步骤,需要吗?
2026-01-11 15:24:10
479
原创 mobaxterm打开软件报错:MoTTY X11 proxy: No authorisation provided
mobaxterm打开软件报错:MoTTY X11 proxy: No authorisation provided。
2026-01-09 12:31:37
110
转载 在 Ubuntu 24 上安装及配置VS-Code-Server `code-server`
推荐使用官方安装脚本或Docker部署。对于长期使用,可以将其作为服务运行并配置反向代理来增强安全性。VS Code 安装、配置教程及插件推荐_vscode-CSDN博客或vscode优化使用体验篇(设置 | 插件)_vscode如何开启高帧率-CSDN博客。
2026-01-08 02:13:50
38
转载 如何通过Windows 11远程连接Ubuntu桌面
在日常开发过程中,很多时候是这样一种情形:一台装了Ubuntu系统的计算机作为远程服务器,开发人员则使用带Windows系统的计算机去连服务器进行开发。连接服务器的方式有很多种,最简单的就是使用ssh登录,这种方式基本上是命令行模式,有的时候还是不太方便。如果想要远程连接Ubuntu桌面直接使用图像界面该怎么操作呢?本文将介绍一种简单的方法。
2026-01-08 00:18:22
36
原创 职业发展建议
成为什么样的人开放的心态:主动寻找mentor或者有能力的话去coach别人主人翁的心态:有承担责任的态度,就算是实习生,交给你的东西也要从头到尾的做好,主动去了解更多、做更好做好基本好就是不好:永远想着这件事可以如何做的更好,under-promise and over-delivery完成比完美重要,战线能拖得短一点就短一点,一鼓作气再而衰三而竭。快速迭代收到反馈马上迭代,及时check in and out,反馈期望值、风险、情绪、进度。学会倾听和谦卑:欲速则不达,很多时候急于表达和mis
2022-05-12 01:57:24
546
转载 腾讯需要什么样的人
小马哥在两会发言中透露,为了邀请一位外籍科学家加入,招聘负责人专门做了PPT给科学家介绍情况,内容细致到在深圳幼儿园要怎么上,为科学家消除后顾之忧。腾讯想要招什么样人的?在腾讯工作的小伙伴都有着怎样的特质?鹅厂小记者盘点了近期公司管理层的发声,也通过话题“你想和什么样的人成为同事”进行了内部意见征集,在获取的答案中,“自驱力”、“责任心”等一些关键词高频出现,“逻辑严谨性”、“思辨能力”也备受重视,甚至“实在”、“聪明”等形容词也是关注点之一。腾讯需要什么样的人,从他们的回答中可以找到答案。
2022-05-12 00:37:37
699
转载 为啥你写的代码总是这么复杂?
摘要:有句话说得很好,“代码质量决定生活质量”,当你把软件的复杂性降低了,bug减少了,系统可维护性更高了,自然也就带来了更好的生活质量。本文分享自华为云社区《写出的代码复杂度太高?看下专家怎么说》,原文作者:元闰子 。前言在进行软件开发时,我们常常会追求软件的高可维护性,高可维护性意味着当有新需求来时,系统易扩展;当出现bug时,开发人员易定位。而当我们说一个系统的可维护性太差时,往往指的是该系统太过复杂,导致给系统增加新功能时容易出现bug,而出现bug之后又难以定位。那么,软件的复杂性
2022-05-11 23:18:45
858
原创 图像检索常用网站汇总
图像检索常用网站汇总1. 论文:paper-with-codevisual-localizationVisual Place Recognitioncamera localizationcamera relocalizationindoor localizationimage retrievalcontent based image retrieval1. 论文:paper-with-codevisual-localizationhttps://paperswithcode.com/task/visu
2022-04-26 23:25:52
696
原创 内网穿透工具
ngrokhttps://github.com/inconshreveable/ngrokfrphttps://github.com/fatedier/frpsmarGatehttps://github.com/catchfishday/smarGate
2022-01-21 21:12:36
874
转载 TensorRT详细入门指北,如果你还不了解TensorRT,过来看看吧!
https://zhuanlan.zhihu.com/p/371239130
2021-08-29 16:46:27
297
转载 如何做好技术调研
如何做好技术调研https://www.jianshu.com/p/235f5e68b631我曾经以实习生的身份做过糟糕或让老大称赞的技术调研;也以正式员工的身份独自负责过技术调研工作(意味着不用向谁汇报,直接进项目);也以导师身份分配技术调研工作给新人,看着几个新人经历着我之前的遭遇,他中有完成得漂漂亮亮的,也有完成得不够好的;最后也旁观过优秀的同事做过技术调研。教技术的书籍很多,但是教做事的书籍很少——即使有也不会教那么细。我曾因这类工作而彷徨、受挫,现在又看着新人彷徨、受挫,于是就有了想法
2021-04-04 00:20:05
1413
原创 基金笔记
指数基金复利,越早越好理财前提:国运好,大盘整体是上升的指数,选股规则 反应这一栏股票中的平均走势上证50沪深300中证500好处:生命周期长,一般股票基金 ,企业经营不善 股票经理退休,都没有办法正常运作,影响理财老公司倒下的时候,吸收新的基金,这样指数基金的寿命和国家的寿命是一样的长期上涨,买国运,成本低,和普通股票基金对比,管理费用,股票基金中最低的一类,长期投资...
2021-04-03 22:58:52
238
原创 异构计算好文汇总
https://zhuanlan.zhihu.com/p/86983772后摩尔时代,异构计算会是通用系统的唯一解决方案吗?https://blog.finaltheory.me/research/DL-And-Heterogeneous.html异构计算视角:深度学习框架的历史演进与展望http://tech.sina.com.cn/it/2012-07-09/17337366789.shtml异构计算是信息技术发展方向https://cloud.tencent.com/developer/a
2021-04-03 22:16:44
200
原创 需求管理 -- 需求等级
a. 基本需求:提供此需求,用户满意度不会提升,不提供此需求,用户满意度大幅度下降b. 期望需求:提供此需求,用户满意度提升,不提供此需求,用户满意度下降c. 兴奋需求:用户意想不到的,提供此需求,用户满意度大幅度提升,不提供此需求,用户满意度不会下降d. 无差异需求:无论是否提供此需求,用户满意度都不会改变e. 反向需求:提供后用户满意度反而下降的需求当我们在确认需求优先级时,尽量避免无差异需求、反向需求,此外优先级排序:基本需求>期望需求>兴奋需求...
2021-04-03 18:35:17
792
转载 需求管理如此重要,如何管理(下篇)
一、 标准化的需求管理需求规划需求处理需求验证需求变更管理P1 需求规划需求规划包括需求管理计划的制订、评审和批准环节。需求管理计划必须经过所有利益相关方/干系人(包括客户、用户、研发/设计团队领导/经理) 的评审,并且经过项目发起人和关键干系人批准。「凡事预则立,不预则废」,就需求管理而言,在需求的整个生命周期中,需求规划阶段充当着最核心的作用,可以说需求规划的完善程度几乎决定了后续项目的成果与否。现在有很多种需求规划模型和方法可供选择,我个人比较喜欢 Google 的 GIST 管理
2021-04-03 18:25:35
342
原创 图像检索:基于内容的图像检索技术
图像检索:基于内容的图像检索技术1. 背景与意义2. 基于内容的图像检索技术2.1 相同物体图像检索2.2 相同类别图像检索2.3 大规模图像检索特点近似最近邻搜索参考文献1. 背景与意义在Web2.0时代,尤其是随着Flickr、Facebook等社交网站的流行,图像、视频、音频、文本等异构数据每天都在以惊人的速度增长。例如, Facebook注册用户超过10亿,每月上传超过10亿的图片;Flickr图片社交网站2015年用户上传图片数目达7.28亿,平均每天用户上传约200万的图片;中国最大的电子商
2021-04-03 14:46:43
4669
原创 工作学习小技巧 ----成就更好的自我
不需要是高手才能分享知识,新手也可以分享,新手更容易帮助新手 少走很多坑。obvious to you, amazing to others.很可能启发其他人~就算感觉自己想法非常普通,也要用于分享出去~可能在别人眼中,是非常有价值的创意和内容。每日重点:不应该深陷待办事项中 不能自拔什么是对自己最重要的,个人生活相关,什么事情是最紧急的需要处理勇敢做别人觉得你不应该做 或者 做不到的事情找回动力和希望既定规则 可能别人给你的建议也是垃圾 或者建议不适用于所有人创作 创
2021-04-03 14:30:07
267
转载 NCNN INT8实现
2.4 INT8量化实现-校准实现(python)下一篇详细说说代码实现的细节部分,以及相关的知识,比如我们为什么要做分布的smooth处理。第三章INT8移动端实现在这部分,我将以自顶向下的方式叙述INT8的kernel实现原理及过程,其中包括开源的NCNN INT8版本以及我优化后INT8版本(QNNPACK INT8版本在《QNNPACK调研》中有详细论述,此文略过仅在最后做数据对比)。3.1 NCNN INT8实现3.1.1 底层量化处理整体流程在每层计算时是需要..
2021-03-24 02:13:13
1994
原创 int8量化--调研
量化简介https://arxiv.org/abs/1806.08342深度学习中网络的加速主要有如下的几种方式:设计高效且小的网络,如MobileNet系列、shuffleNet系列、VoVNet等;从大的模型开始通过量化、剪裁、蒸馏等压缩技术实现网络的小型化;在inference阶段使用特殊的计算库实现计算的加速,比如MKL、TensorRT等;1. 量化在上面的方法中最简单的方法就是降低模型运算过程中的bits数量,降低到16bits、8bits甚至2bits。这样做具有如下的优点:
2021-03-23 00:31:45
2300
转载 张一鸣:我判断人才的3个标准,第1个就淘汰了大部分人
张一鸣:我判断人才的3个标准,第1个就淘汰了大部分人抖音、今日头条,这些热门APP的背后,是张一鸣掌舵的字节跳动。最近字节跳动员工10万人的消息引发热议,为什么张一鸣总能招揽到优秀人才?这篇文章6100字,预计15分钟读完,带你了解张一鸣的人才观,以及他经营企业的“秘诀”。2012年8月20日,中国视频行业如日中天的两大寡头——优酷、土豆在中关村普天大厦握手言和,宣布正式合并。而就在优酷土豆完成约半年的整合期后,土豆网创始人王微宣布辞职,此后土豆系高管几乎全部离职,带着那句曾经...
2021-02-13 12:32:22
834
转载 现代 CMake 简明教程--CMake 基础
前言用 CMake 来构建 C/C++ 项目是业内的主流做法。最近,我们的项目代码做了一些拆分和合并:引入其他仓库代码,并且将公共部分拆分以供多个仓库同时使用。为此,就得修改项目中的 CMake 以满足需求。在做这件事情时,过程是相当痛苦的,修改的难度超过了我的预期。这份痛苦的回忆,让我陷入了沉思:这 CMake 咋这么不好使,是我的使用姿势不对吗?CMake 的最佳实践是啥?在经过一番搜索和学习,我开始了解 Modern CMake 的一些用法与理念,它主张放弃传统的基于变量的方法,而采用基于
2021-02-08 00:54:20
2871
转载 CMake 教程
1. 编译单目录工程1.创建工程文件夹mkdir hello #工程目录cd hellomkdir src # 存放源代码的目录mkdir build # 存放编译中间代码和目标代码的目录2.进入src目录,编写一个main.c文件#include <stdio.h>int main(int argc, char **argv){ printf("hello world\n"); return 0;}3.编写工程顶层目录..
2021-02-08 00:17:46
1162
转载 Ubuntu 20.04安装CUDA 11.0、cuDNN 8.0.5、PyTorch 1.7.0
Ubuntu 20.04安装CUDA 11.0、cuDNN 8.0.5、PyTorch 1.7.0转载请注明出处 BooTurbohttps://www.cnblogs.com/booturbo/p/13960935.html因为电脑漏洞的缘故,前几天将Ubuntu18.04换成了20.04,无奈要重装PyTorch等环境,只有CUDA11.0以上版本才支持Ubuntu20.04,所以安装了CUDA11.0、cuDNN8.0.5及PyTorch1.7.0。这里记录下过程,以...
2021-02-07 23:03:47
1762
转载 Eigen API汇总 & 简介
// 参考 - http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt// 一个关于Eigen的快速参考// Matlab和Eigen的对应用法// Main author: Keir Mierle// 注释:张学志#include <Eigen/Dense>Matrix<double, 3, 3> A; // 固定大小的双精度矩阵,和Matrix3d一样。Matrix<dou.
2021-02-05 23:39:01
2550
原创 Convert ONNX model file to Caffe2 model file(pb)
Convert ONNX model file to Caffe2 model file(pb)onnx-caffe2 has bundled a shell command convert-onnx-to-caffe2 for converting ONNX model file to Caffe2 model file.$ convert-onnx-to-caffe2 assets/squeezenet.onnx --output predict_net.pb --init-net-output i
2021-01-29 00:03:02
324
原创 run onnx model with tf-backend and onnxruntime-gpu
onnx.__version__'1.8.0'import torchvision.models as modelsresnet18 = models.resnet18(pretrained=True)Downloading: "https://download.pytorch.org/models/resnet18-5c106cde.pth" to C:\Users\KangningCAI/.cache\torch\hub\checkpoints\resnet18-5c106cde.pt..
2021-01-23 08:23:16
1159
3
转载 ONNX结构分析
ONNX结构分析onnx将每一个网络的每一层或者说是每一个算子当作节点Node,再由这些Node去构建一个Graph,相当于是一个网络。最后将Graph和这个onnx模型的其他信息结合在一起,生成一个model,也就是最终的.onnx的模型。onnx.helper----node、graph、model在构建onnx模型这个过程中,这个文件至关重要。其中make_node、make_graph、make_model是不可或缺的。make_tensor_value_info和make_tensor
2021-01-20 23:09:58
2520
原创 转换&优化 onnx模型
1. tf 转onnx使用TensorFlow框架训练模型,然后导出为ONNX格式,一般需要经历以下几个步骤:训练(Training)转PB文件(Graph Freezing)模型格式转换(Model Conversion)1.1 训练(Training)为了成功将TF model转成ONNX model,需要准备3部分信息:TF的图定义,即只包含网络拓扑信息(不含权重信息)。获取方法为在inference代码中,插入以下代码进行输出:with open("net.proto", "
2021-01-17 20:08:15
4484
1
原创 onnx内部结构 -- 摘录
1. onnx 结构分析onnx将每一个网络的每一层或者说是每一个算子当作节点Node,再由这些Node去构建一个Graph,相当于是一个网络。最后将Graph和这个onnx模型的其他信息结合在一起,生成一个model,也就是最终的.onnx的模型...
2021-01-17 20:03:56
1719
原创 onnx修改教程
1. 载入ONNX文件输出该模型的节点个数,还有节点中的属性信息,当然也包含静态图的链路形状。import onnxonnx_model = onnx.load("test.onnx")graph = onnx_model.graphnode = graph.nodefor i in range(len(node)): print(node[i])2. 搜索目标节点for i in range(len(node)): if node[i].op_type == 'Con
2021-01-16 23:46:10
8817
1
转载 NetVlad
@InProceedings{Arandjelovic16,author = “Arandjelovi’c, R. and Gronat, P. and Torii, A. and Pajdla, T. and Sivic, J.”,title = “{NetVLAD}: {CNN} architecture for weakly supervised place recognition”,booktitle = “IEEE Conference on Computer Vision and P
2021-01-11 01:06:06
442
原创 python常用方法
collections namedtuplePython中存储系列数据,比较常见的数据类型有list,除此之外,还有tuple数据类型。相比与list,tuple中的元素不可修改,在映射中可以当键使用。tuple元组的item只能通过index访问,collections模块的namedtuple子类不仅可以使用item的index访问item,还可以通过item的name进行访问。可以将namedtuple理解为c中的struct结构,其首先将各个item命名,然后对每个item赋予数据。coordi
2021-01-10 22:49:13
177
转载 卷积原理:几种常用的卷积(标准卷积、深度卷积、组卷积、扩展卷积、反卷积)
转载自:https://blog.csdn.net/chenyuping333/article/details/82531047?utm_source=blogxgwz60、标准卷积默认你已经对卷积有一定的了解,此处不对标准卷积细讲。举个例子,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。之所以会得到一通道的数据,是因为刚开始3×3×16的卷积核
2021-01-10 22:47:18
2486
原创 面向边缘设备的轻量神经网络 --报告
黄高 清华大学自动化系助理教授2020.12.10在这里插入图片描述轻量化的模型神经网络结构搜索动态模型transformer在视觉里面的结构设计右边三个 是 结构搜索出来的模型,更大的搜索空间NAS四个关键问题离散搜索问题怎样将神经网络结构的设计问题 转换为 搜索问题?搜索集定义的很好,即使随便挑一个出来 也能做的非常好~基于可微分的方法进行优化动态神经网络的工作imageNet大模型到底比小模型好在哪里?总有一些不典型的照片~正确预测
2020-12-31 01:31:00
704
2
原创 【论文笔记】smooth-AP : smoothing the path towards large-scale image retrieval
title:Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrievallink:https://arxiv.org/abs/2007.12163Presentation:Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval, ECCV 2020code:https://github.com/Andrew-Brown1/Smooth_APauthor:V
2020-12-27 15:07:17
799
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅