HiMCM数学建模(1)---概率模型


创作不易,麻烦各位:点赞、收藏、关注!!!
作者: 天人实验室
转载请联系作者并注明出处

************ 目录 ************

概率的基础知识

\quad\quad 在现实世界中,事物的变化受着众多因素的影响,包括确定性因素和随机因素。其中确定性的因素是直接的,对主体变化有着决定性作用的因素。确定性因素决定了事物变化的规律。而随机因素是不确定性的因素,其变化规律是自由的,随意的,不可预测的。对于随机因素,在大量的观测时又存在一定的统计规律,比如炮弹发射的落点问题,其中确定性的因素是炮弹发射的初速度,角度等,通过弹道方程,我们可以计算出炮弹的落点。然而,炮弹的落点与理论上计算得到的落点会存在一定的偏差,这是由于风速、湿度、温度等随机因素的影响,而风速、湿度、温度等因素会随着空间-时间动态变化,并且不同时间不同空间的风速、湿度、温度的变化是随机的,不可准确预测的。而对于这种不确定性的因素我们称之为随机因素。

概率

\quad\quad 对于随机的变量或者随机的事件,概率反映了事件发生的可能性的大小,我们通常使用 0 ≤ p ( A ) ≤ 1 0 \leq p(A) \leq1 0p(A)1表示事件 A A A发生的概率。

概率加法: 任意两个事件的和事件发生的概率
p ( A + B ) = p ( A ) + p ( B ) − p ( A B ) p(A+B) = p(A)+p(B)-p(AB) p(A+B)=p(A)+p(B)p(AB)

例题: 投骰子,出现2和3中至少一个的概率
p ( 2 + 3 ) = p ( 2 ) + p ( 3 ) − p ( 2 , 3 ) = 1 / 6 + 1 / 6 − 0 = 1 / 3 p(2+3) = p(2)+p(3)-p(2,3) = 1/6 +1/6 - 0 = 1/3 p(2+3)=p(2)+p(3)p(2,3)=1/6+1/60=1/3

条件概率: 条件概率是在一定条件下(事件 B B B发生)事件 A A A发生的概率。

p ( A ∣ B ) = p ( A B ) p ( B ) p(A|B) = \frac{p(AB)}{p(B)} p(AB)=p(B)p(AB)

例题:
假定100个居民,订购报纸A的有95户,订购报纸B的有93户,同时订购两种报纸的有90户。则任一个订购报纸A的居民中,其同时订购了报纸B的概率为:

p ( A ) = 95 100 , p ( B ) = 93 100 , p ( A B ) = 90 100 \quad \quad p(A) = \frac{95}{100}, p(B) = \frac{93}{100}, p(AB) = \frac{90}{100} p(A)=10095,p(B)=10093,p(AB)=10090
p ( B ∣ A ) = p ( A B ) p ( A ) = 90 95 \quad \quad \quad \quad \quad p(B|A) = \frac{p(AB)}{p(A)} = \frac{90}{95} p(BA)=p(A)p(AB)=9590

概率乘法: 概率乘法由条件概率而来
p ( B ) p ( A ∣ B ) = p ( A B ) \quad \quad \quad \quad \quad p(B)p(A|B) = p(AB) p(B)p(AB)=p(AB)

例题: 投1颗骰子,出现2为事件A和出现3为事件B,求 p ( A B ) p(AB) p(AB):
p ( A B ) = 1 / 6 × [ 0 ÷ 1 / 6 ] = 0 p(AB) = 1/6 \times [0 \div 1/6] = 0 p(AB)=1/6×[0÷1/6]=0

全概率公式与贝叶斯公式:
\quad\quad 全概率公式:假定 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An是样本空间的一个完备事件组,也就是说事件 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An两两互不相容, A 1 ∩ A 2 = ∅ ( i ≠ j ) A_1 \cap A_2 = \emptyset (i \ne j) A1A2=(i=j), 并且 A 1 ∪ A 2 ∪ ⋯ ∪ A n = S A_1 \cup A_2\cup \dots\cup A_n = S A1A2An=S。 B为一个事件,则全概率公式为:
p ( B ) = p ( A 1 ) p ( B ∣ A 1 ) + p ( A 2 ) p ( B ∣ A 2 ) + ⋯ + p ( A n ) p ( B ∣ A n ) p(B) = p(A_1)p(B|A_1) + p(A_2)p(B|A_2) + \dots +p(A_n)p(B|A_n) p(B)=p(A1)p(BA1)+p(A2)p(BA2)++p(An)p(BAn)

贝叶斯公式:
p ( A i ∣ B ) = p ( A i B ) p ( B ) = p ( B ∣ A i ) p ( A i ) ∑ j = 1 n p ( B ∣ A i ) p ( A i ) ( i = 1 , 2 , … , n ) p(A_i|B) = \frac{p(A_iB)}{p(B)} = \frac{p(B|A_i)p(A_i)}{\sum_{j=1}^{n}p(B|A_i)p(A_i)} (i = 1,2,\dots,n) p(AiB)=p(B)p(AiB)=j=1np(BAi)p(Ai)p(BAi)p(Ai)(i=1,2,,n)

例题: 3个车间共同加工某一零件,其次品率和任务占比如下表所示:

车间次品率任务百分比
A0.020.15
B0.010.8
C0.030.05

(1)利用全概率公式计算总体次品率;
(2)事件B表示任意选一个零件为次品,利用贝叶斯公式计算计算其来自A,B,C三个车间的可能性。
解:
(1)根据全概率公式, p ( B ) = p ( A 1 ) p ( B ∣ A 1 ) + p ( A 2 ) p ( B ∣ A 2 ) + p ( A 3 ) p ( B ∣ A 3 ) = 0.15 ∗ 0.02 + 0.8 ∗ 0.01 + 0.05 ∗ 0.03 = 0.0125 p(B) = p(A_1)p(B|A_1)+p(A_2)p(B|A_2)+p(A_3)p(B|A_3) = 0.15*0.02+0.8*0.01+0.05*0.03 = 0.0125 p(B)=p(A1)p(BA1)+p(A2)p(BA2)+p(A3)p(BA3)=0.150.02+0.80.01+0.050.03=0.0125

(2)根据贝叶斯公式:
p ( B ∣ A 1 ) = p ( B ∣ A 1 ) p ( A 1 ) ∑ j = 1 n p ( B ∣ A i ) p ( A i ) = 0.02 × 0.15 0.0125 = 0.24 p(B|A_1) = \frac{p(B|A_1)p(A_1)}{\sum_{j=1}^{n}p(B|A_i)p(A_i)} = \frac{0.02\times0.15}{0.0125} = 0.24 p(BA1)=j=1np(BAi)p(Ai)p(BA1)p(A1)=0.01250.02×0.15=0.24

p ( B ∣ A 2 ) = p ( B ∣ A 2 ) p ( A 2 ) ∑ j = 1 n p ( B ∣ A i ) p ( A i ) = 0.01 × 0.8 0.0125 = 0.64 p(B|A_2) = \frac{p(B|A_2)p(A_2)}{\sum_{j=1}^{n}p(B|A_i)p(A_i)} = \frac{0.01\times0.8}{0.0125} = 0.64 p(BA2)=j=1np(BAi)p(Ai)p(BA2)p(A2)=0.01250.01×0.8=0.64

p ( B ∣ A 3 ) = p ( B ∣ A 3 ) p ( A 3 ) ∑ j = 1 n p ( B ∣ A i ) p ( A i ) = 0.03 × 0.05 0.0125 = 0.12 p(B|A_3) = \frac{p(B|A_3)p(A_3)}{\sum_{j=1}^{n}p(B|A_i)p(A_i)} = \frac{0.03\times0.05}{0.0125} = 0.12 p(BA3)=j=1np(BAi)p(Ai)p(BA3)p(A3)=0.01250.03×0.05=0.12

常见概率分布函数

二项分布: 二项分布主要针对实验结果只存在两种状态的问题,最经典的就是贝努利实验。假定某一实验有两种结果,即A和B。其中p(A) = p表示事件A的概率。进行n次独立重复实验,则事件A出现的次数即服从二项分布。

p ( x = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , 3 , … , n p(x = k) = C_n^k p^k(1-p)^{n-k}, k=0,1,2,3,\dots,n p(x=k)=Cnkpk(1p)nk,k=0,1,2,3,,n

泊松分布: 泊松分布是一种典型的离散型概率密度函数,在排队问题上有着重要的应用。假定x表示某一事件发生的次数,比如单位时间内,到达理发店顾客的数量。泊松分布的概率密度函数为:

p ( x = k ) = λ k k ! e − λ , k = 0 , 1 , 2 , 3 , … , n p(x = k) = \frac{\lambda ^k}{k!} e^{-\lambda}, k=0,1,2,3,\dots,n p(x=k)=k!λkeλ,k=0,1,2,3,,n

正态分布: 正态分布是一种最典型、最常见的随机分布。在现实生活中,正态分布的案例有很多,比如某一高中校园,高二学生中男生的身高、女生的身高,炮弹的落点等。这些案例中,变量的数值越接近分布的中心(平均数),出现的概率越高。现实中这种案例有很多,比如工厂生产的零件的尺寸等。

p ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^ {-\frac{(x-\mu)^2}{2 \sigma^2}} p(x)=2π σ1e2σ2(xμ)2

记作 x ∼ N ( μ , σ 2 ) x \sim N(\mu, \sigma^2) xN(μ,σ2)。其中 μ \mu μ表示均值, σ 2 \sigma^2 σ2表示方差。

基于Matlab的概率模型相关计算

\quad 数学期望(mathematic expectation)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

\quad 根据大数定律,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

离散型
E [ X ] = ∑ k ∞ p k x k E[X] = \sum_k^\infty p_k x_k E[X]=kpkxk
连续型
E [ X ] = ∫ − ∞ ∞ x p ( x ) d x E[X] = \int _{-\infty}^{\infty} xp(x)dx E[X]=xp(x)dx

在matlab编程计算中,提供了相关的函数计算不同分布的概率:
\quad\quad 二项分布:bino
\quad\quad 泊松分布:poiss
\quad\quad 卡方分布:chi2
\quad\quad t分布:t
\quad\quad F分布:F
\quad\quad 正态分布:norm

例题: 使用Matlab绘制正态分布N(0,1)和N(0, 2 2 2^2 22)的概率密度函数图形。

clc;
clear;
close all;
x = -10:0.01:10;
y = normpdf(x);
y2 = normpdf(x,0,2);
plot(x,y,x,z)

概率模型案例分析

\quad\quad 概率模型在数学建模中有着十分广泛的应用,包括仿真,判别,检测等。下面我们将通过几个实际案例来讲解和分析概率模型的应用。

基于概率分布的离群数据判别方法

问题提出
\quad\quad 假定某一高中二年级共有500名学生,通过体能测试,获取了每个学生的身高和体重数据,如何根据学生身高和体重的数据来判别每个学生的性别。

问题分析: 同一年龄的学生的身高和体重是由人的基因的先天因素和后天饮食情况决定的,对于同一年龄段的中学生来说,不同性别的学生的身高和体重存在明显的差异,男生的平均身高和体重明显高于女生。因此,我们可以根据男生身高、体重分布与女生之间的差异来对学生的性别进行判别。

模型假设 假定不同性别的学生的身高和体重均服从正态分布,假定 x 1 , x 2 , y 1 , y 2 x_1,x_2,y_1,y_2 x1,x2,y1,y2分别表示男生的身高、男生的体重,女生的身高、女生的体重,则有:

x 1 ∼ N ( μ 1 , σ 1 2 ) , x 2 ∼ N ( μ 2 , σ 2 2 ) , y 1 ∼ N ( μ 3 , σ 3 2 ) , y 2 ∼ N ( μ 4 , σ 4 2 ) \quad\quad x_1 \sim N(\mu_1, \sigma_1^2),\\ \quad\quad x_2 \sim N(\mu_2, \sigma_2^2),\\ \quad\quad y_1 \sim N(\mu_3, \sigma_3^2),\\\quad\quad y_2 \sim N(\mu_4, \sigma_4^2) x1N(μ1,σ12),x2N(μ2,σ22),y1N(μ3,σ32),y2N(μ4,σ42)

模型建立
\quad\quad 假定第 i i i个学生的身高、体重为 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)。所有男生身高和体重的中心(均值)为 ( μ 1 , μ 2 ) (\mu_{1},\mu_{2}) (μ1,μ2);所有女生的身高和体重的中心(均值)为 ( μ 3 , μ 4 ) (\mu_{3},\mu_{4}) (μ3,μ4)

\quad\quad 根据上述的正态分布假设,我们定义第 i i i个学生 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生和女生的概率分别为:
身高: p x ( z i 1 ) = 1 2 π σ 1 e − ( z i 1 − μ 1 ) 2 2 σ 1 2 p_x(z_{i1}) = \frac{1}{\sqrt{2\pi}\sigma_1}e^ {-\frac{(z_{i1}-\mu_1)^2}{2 \sigma_1^2}} px(zi1)=2π σ11e2σ12(zi1μ1)2
p y ( z i 1 ) = 1 2 π σ 3 e − ( z i 1 − μ 3 ) 2 2 σ 3 2 p_y(z_{i1}) = \frac{1}{\sqrt{2\pi}\sigma_3}e^ {-\frac{(z_{i1}-\mu_3)^2}{2 \sigma_3^2}} py(zi1)=2π σ31e2σ32(zi1μ3)2
体重: q x ( z i 2 ) = 1 2 π σ 2 e − ( z i 1 − μ 2 ) 2 2 σ 2 2 q_x(z_{i2}) = \frac{1}{\sqrt{2\pi}\sigma_2}e^ {-\frac{(z_{i1}-\mu_2)^2}{2 \sigma_2^2}} qx(zi2)=2π σ21e2σ22(zi1μ2)2
q y ( z i 2 ) = 1 2 π σ 4 e − ( z i 1 − μ 4 ) 2 2 σ 1 4 q_y(z_{i2}) = \frac{1}{\sqrt{2\pi}\sigma_4}e^ {-\frac{(z_{i1}-\mu_4)^2}{2 \sigma_1^4}} qy(zi2)=2π σ41e2σ14(zi1μ4)2

由此建立学生性别的判别模型如下:

δ ( z i 1 , z i 2 ) = l o g ( p x ( z i 1 ) 2 ∗ p y ( z i 1 ) + q x ( z i 1 ) 2 ∗ q y ( z i 1 ) ) \delta (z_{i1},z_{i2}) = log\left(\frac{p_x(z_{i1})}{2*p_y(z_{i1})} + \frac{q_x(z_{i1})}{2*q_y(z_{i1})}\right) δ(zi1,zi2)=log(2py(zi1)px(zi1)+2qy(zi1)qx(zi1))

\quad\quad 根据上述的判别模型可以看出, p x ( z i 1 ) p y ( z i 1 ) \frac{p_x(z_{i1})}{p_y(z_{i1})} py(zi1)px(zi1)表示的是基于身高信息第 i i i个学生 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生和女生的概率的比值,当 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生的概率大于属于女生的概率时,则 p x ( z i 1 ) p y ( z i 1 ) > 1 \frac{p_x(z_{i1})}{p_y(z_{i1})}>1 py(zi1)px(zi1)>1。由此 l o g ( p x ( z i 1 ) p y ( z i 1 ) ) > 0 log(\frac{p_x(z_{i1})}{p_y(z_{i1})}) > 0 log(py(zi1)px(zi1))>0,判定 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)为男生; 反之,当 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生的概率小于属于女生的概率时,则 p x ( z i 1 ) p y ( z i 1 ) < 1 \frac{p_x(z_{i1})}{p_y(z_{i1})}<1 py(zi1)px(zi1)<1。由此 l o g ( p x ( z i 1 ) p y ( z i 1 ) ) < 0 log(\frac{p_x(z_{i1})}{p_y(z_{i1})}) < 0 log(py(zi1)px(zi1))<0,判定 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)为女生。

\quad\quad 同理, q x ( z i 1 ) q y ( z i 1 ) \frac{q_x(z_{i1})}{q_y(z_{i1})} qy(zi1)qx(zi1)表示的是基于体重信息,第 i i i个学生 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生和女生的概率的比值,当 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生的概率大于属于女生的概率时,则 q x ( z i 1 ) q y ( z i 1 ) > 1 \frac{q_x(z_{i1})}{q_y(z_{i1})}>1 qy(zi1)qx(zi1)>1。由此 l o g ( q x ( z i 1 ) q y ( z i 1 ) ) > 0 log(\frac{q_x(z_{i1})}{q_y(z_{i1})}) > 0 log(qy(zi1)qx(zi1))>0,判定 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)为男生; 反之,当 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)属于男生的概率小于属于女生的概率时,则 q x ( z i 1 ) q y ( z i 1 ) < 1 \frac{q_x(z_{i1})}{q_y(z_{i1})}<1 qy(zi1)qx(zi1)<1。由此 l o g ( q x ( z i 1 ) q y ( z i 1 ) ) < 0 log(\frac{q_x(z_{i1})}{q_y(z_{i1})}) < 0 log(qy(zi1)qx(zi1))<0,判定 ( z i 1 , z i 2 ) (z_{i1},z_{i2}) (zi1,zi2)为女生。

模型求解
\quad\quad 对于上述模型的求解,主要是计算两个不同性别学生群体的身高、体重的均值和方差。由于给定的500个学生的数据的性别是未知的。因此,判别模型中两个不同性别学生群体的身高、体重的均值和方差是未知的。对此我们可以首先通过简单的判别方法,首先对500个学生的性别进行粗略的判别。
假定学生的平均身高为 μ \mu μ,则学生的性别判别的粗模型如下:

f ( z i 1 ) = { 1 , i f z i 1 > μ 0 , e l s e z i 1 ≤ μ f(z_{i1})=\left\{ \begin{aligned} 1, if \quad z_{i1} > \mu \\ 0, else z_{i1} \leq \mu\\ \end{aligned} \right. f(zi1)={1,ifzi1>μ0,elsezi1μ
其中 f ( z i 1 ) = 1 f(z_{i1})=1 f(zi1)=1表示男生, f ( z i 1 ) = 0 f(z_{i1})=0 f(zi1)=0表示女生。因此,我们可以通过上述方法对学生的性别进行粗略判断,并基于粗略判断的结果,对模型中的参数(男生/女生的身高、体重的均值和方差)。

分析总结
\quad\quad 综上所述,对于学生性别的判别,我们可以通过不同性别学生身高和体重特征数据的分布特点来建立数学模型。当然,在现实生活中,这种例子有很多,我们可以通过一些简单的方法来实现数据的判别,比如对于这个例题中对学生性别的判别问题,我们可以简单的求解所有学生的平均身高,然后大于平均身高的我们判定为男生,小于平均身高的判定为女生。那么,我们为什么要使用数学模型呢?有什么意义呢?数学模型提供了更加科学合理的判别方法,使得判别结果更加可信。通过平均值进行判别的简单方法,错误率会相对较高。此外,我们通过该例题主要是了解基于分布概率解决问题的思路和方法,例题相对简单,我们的目的是了解概率模型的同时,掌握使用概率模型解决实际问题的思路,进而提高逻辑思维能力和数学建模的能力。

报童问题

问题提出
\quad\quad 报童问题是一个经典的数学问题。报童每天以进价a从报社采购报纸,然后以b价格进行销售。每天剩余的报纸又以c价格退回给报社。并且有 b > a > c b>a>c b>a>c。那么我们该如何确定报童采购报纸的数量,使得报童的销售利润最大化呢?

问题分析 根据报纸进价、售价、回购价之间的关系,我们可以知道,报童每售出一份报纸的盈利为b-a,每退回一份报纸的亏损为a-c。因此,我们可以看出,报童每天采购的报纸数量约接近实际销售数量,盈利就越高。采购数量过多,则会导致退回的报纸数量过多,盈利下降甚至亏损。而如果采购的数量过少,则会导致供不应求,同样会影响报童的盈利。
\quad\quad 因此,我们希望报童的采购量要尽可能接近销售量。然而,每天的销售量在采购之前是未知的,随机的,我们可以通过概率函数来表达每天的销售量。

模型假设
\quad\quad 假定每天的报纸销售数量具有随机性,每天的报纸销售数量为 r r r,销售数量为 r r r的概率为 p ( r ) , r = 1 , 2 , ⋯   , n p(r),r=1,2,\cdots,n p(r)r=1,2,,n。假定销售数量 r r r服从正态分布。

模型建立
定义G(n)表示报童的收入,n为报纸采购数量。则建立报童的收益模型:

G ( n ) = ∑ r = 0 n [ ( b − a ) ∗ r − ( n − r ) ∗ ( a − c ) ] ∗ p ( r ) + ∑ r = n + 1 ∞ [ ( b − a ) ∗ n ∗ p ( r ) ] G(n) = \sum_{r=0}^{n} [(b-a)*r - (n-r)*(a-c)]*p(r)+\sum_{r=n+1}^{\infty}[(b-a)*n*p(r)] G(n)=r=0n[(ba)r(nr)(ac)]p(r)+r=n+1[(ba)np(r)]

根据上述收益模型可知,影响报童收益的主要因素是采购数量和实际需求数量(销售数量 r r r)。而实际需求量是随机变化的。因此,对于报童问题研究的是使得收益最大化的采购数量 n n n

模型求解
将销售数量看作一个连续变量,则对应的连续收益模型如下:
G ( n ) = ∫ 0 n [ ( b − a ) ∗ r − ( n − r ) ∗ ( a − c ) ] ∗ p ( r ) d r + ∫ n + 1 ∞ [ ( b − a ) ∗ n ∗ p ( r ) ] d r G(n) = \int _{0}^{n} [(b-a)*r - (n-r)*(a-c)]*p(r)dr+\int_{n+1}^{\infty}[(b-a)*n*p(r)]dr G(n)=0n[(ba)r(nr)(ac)]p(r)dr+n+1[(ba)np(r)]dr

下面,我们通过对收益函数求导,令倒数 ∂ G ( n ) ∂ n = 0 \frac{\partial G(n)}{\partial n} = 0 nG(n)=0,求解收益最大的采购数量 n n n

∂ G ( n ) ∂ n = [ ( b − a ) ∗ n ∗ p ( n ) ] − ∫ 0 n ( a − c ) ∗ p ( r ) d r − [ ( b − a ) ∗ n ∗ p ( n ) ] + ∫ n ∞ ( b − a ) ∗ p ( r ) d r , = − ∫ 0 n ( a − c ) ∗ p ( r ) d r + ∫ n ∞ ( b − a ) ∗ p ( r ) d r , ∂ G ( n ) ∂ n = 0 ⟹ ∫ 0 n p ( r ) d r ∫ n ∞ p ( r ) d r = b − a a − c \frac{\partial G(n)}{\partial n} = [(b-a)*n*p(n)] - \int _{0}^{n} (a-c)*p(r)dr - [(b-a)*n*p(n)] + \int _{n}^{\infty} (b-a)*p(r)dr,\\ =- \int _{0}^{n} (a-c)*p(r)dr + \int _{n}^{\infty} (b-a)*p(r)dr,\\ \frac{\partial G(n)}{\partial n} = 0 \Longrightarrow \frac{\int _{0}^{n} p(r)dr}{\int _{n}^{\infty} p(r)dr} = \frac{b-a}{a-c} nG(n)=[(ba)np(n)]0n(ac)p(r)dr[(ba)np(n)]+n(ba)p(r)dr,=0n(ac)p(r)dr+n(ba)p(r)dr,nG(n)=0np(r)dr0np(r)dr=acba

因此,对于报童问题的解是求解采购数量 n n n使得,
∫ 0 n p ( r ) d r ∫ n ∞ p ( r ) d r = b − a a − c \frac{\int _{0}^{n} p(r)dr}{\int _{n}^{\infty} p(r)dr} = \frac{b-a}{a-c} np(r)dr0np(r)dr=acba

分析总结
\quad\quad 根据上述求解过程可以看出,影响最终结果的主要是销售数量 r r r的概率分布。通过假定实际需求量(销售量r)的分布,比如正态分布。然后,在实际应用中,搜集销售数据,估计销售量r的均值和方差,从而根据r的概率密度函数及上述的收益模型,可以计算得到对应的收益最大化的采购量。

$针对文章内容,如有疑问欢迎加入讨论:

请添加图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值