7步走写摘要: Multi-view clustering with graph embedding for connectome analysis

 

本篇论文发表于International Conference on Information and Knowledge Management, Proceedings (2017) ,CCF B类,会议。

基于多视图图的聚类旨在为多视图数据提供聚类解决方案。然而,大多数现有方法没有充分考虑不同视图的权重,并且需要额外的聚类步骤来产生最终的聚类。他们通常还基于所有视图的固定图相似度矩阵来优化目标。在本文中,我们提出了一种基于图形的通​​用多视图聚类(GMC)来解决这些问题。 GMC获取所有视图的数据图矩阵并将其融合以生成统一的矩阵。统一矩阵又改善了每个视图的数据图矩阵,并直接给出了最终的聚类。 GMC的关键新颖之处在于其学习方法,它可以以相互增强的方式帮助学习每个视图图形矩阵和统一矩阵。一种新颖的多视图融合技术可以自动对每个数据图矩阵进行加权,以得出统一的矩阵。在不引入调整参数的情况下,秩约束也施加在统一矩阵的拉普拉斯矩阵上,这有助于将数据点自然地划分为所需数量的簇。提出了一种交替迭代优化算法来优化目标函数。实验结果表明,提出的方法明显优于最新的基准。Multi-view clustering has become a widely studied problem in the area of unsupervised learning. It aims to integrate multiple views by taking advantages of the consensus and complimentary information from multiple views. Most of the existing works in multi-view clustering utilize the vector-based representation for features in each view. However, in many real-world applications, instances are represented by graphs, where those vector-based models cannot fully capture the structure of the graphs from each view. To solve this problem, in this paper we propose a Multi-view Clustering framework on graph instances with Graph Embedding (MCGE). Specifically, we model the multi-view graph data as tensors and apply tensor factorization to learn the multi-view graph embeddings, thereby capturing the local structure of graphs. We build an iterative framework by incorporating multi-view graph embedding into the multi-view clustering task on graph instances, jointly performing multi-view clustering and multi-view graph embedding simultaneously. The multi-view clustering results are used for refining the multi-view graph embedding, and the updated multi-view graph embedding results further improve the multi-view clustering. Extensive experiments on two real brain network datasets (i.e., HIV and Bipolar) demonstrate the superior performance of the proposed MCGE approach in multi-view connectome analysis for clinical investigation and application.

第一步: 交代研究背景

 

Multi-view clustering has become a widely studied problem in the area of unsupervised learning. It aims to integrate multiple views by taking advantages of the consensus and complimentary information from multiple views.

第二步: 概括当前方法

 

Most of the existing works in multi-view clustering utilize the vector-based representation for features in each view.

第三步: 一般介绍现有方法的不足,论文给出的一些解决办法。

 

However, in many real-world applications, instances are represented by graphs, where those vector-based models cannot fully capture the structure of the graphs from each view.

 

 

第四步: 提出当前的方法

 

To solve this problem, in this paper we propose a Multi-view Clustering framework on graph instances with Graph Embedding (MCGE).

第五步: 在提出论文的方法之后,需要进行对自己提出的方法的大致的介绍

Specifically, we model the multi-view graph data as tensors and apply tensor factorization to learn the multi-view graph embeddings, thereby capturing the local structure of graphs.
第六步: 第五步进行了理论上的阐述。这一步呢,通常是对提出的算法怎么样实现优化的一句话或者两句话。不能太长,因为有字数限制。(可有,也可以没有,视具体论文而定)We build an iterative framework by incorporating multi-view graph embedding into the multi-view clustering task on graph instances, jointly performing multi-view clustering and multi-view graph embedding simultaneously. The multi-view clustering results are used for refining the multi-view graph embedding, and the updated multi-view graph embedding results further improve the multi-view clustering.
第七步: 简要介绍一下实验,这个比较的套路,一般都是这个套路。Extensive experiments on two real brain network datasets (i.e., HIV and Bipolar) demonstrate the superior performance of the proposed MCGE approach in multi-view connectome analysis for clinical investigation and application.

摘要解读


第一步: 交代背景:多视角数据的普遍性和重要性

第二步: 概括当前方法 。

第三步: 一般介绍现有方法的不足 

第四步: 提出当前的方法

第五步: 在提出论文的方法之后,需要进行对自己提出的方法的大致的介绍 

第六步: 第五步进行了理论上的阐述。这一步呢,通常是对提出的算法怎么样实现优化的一句话或者两句话。不能太长,因为有字数限制。

第七步: 简要介绍一下实验,这个比较的套路。

以上就是大致的一个流程,我也正在学习,若有不足请各位耐心支出。非常感谢。

一般的摘要都会遵循这七个步骤,不同的步骤之间可能会融合到一块进行书写,在我们自己进行书写摘要的时候,可以参照这个步骤。如果自己在某个步骤实在想不出来,就暂时空下来。

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值