摘要:本文提出了一种新的多视点属性图卷积网络(MAGCN)聚类模型。MAGCN设计了两个路径编码器,用于映射嵌入特征的图形和学习视图一致性信息。具体地说,第一种方法开发了多视图属性图注意网络,以减少噪声/冗余,并学习多视图图数据的嵌入特征。第二种方法开发了一致性嵌入编码器来捕获不同视图之间的几何关系和概率分布的一致性,自适应地为多视图属性找到一致的聚类嵌入空间。在三个基准图数据库上的实验表明,与现有的几种算法相比,该方法是有效的。
以往多时间图聚类有以下缺点:
1) 它们不能为邻域中的不同节点分配指定不同权重的可学习性;2)忽略了节点属性和图结构的重构;3)对于不同视图之间的一致性关系,没有明确考虑相似距离度量。此外,现有的多视图GNN方法主要集中在多个图的情况下,而忽略了同样重要的属性多样性,即多属性。然而,在现实世界中,一个图具有相同连接关系的多个特征属性是很常见的。
因此,我们提出了一个方法
具体的:1) 为了给不同的节点分配可学习的权值,MAGCN开发了多视图属性图卷积编码器,该编码器采用注意机制从多视图数据中学习图嵌入。2) 属性和图重建都是由MAGCN的图卷积译码器计算的。3) 将多视图图形数据之间的几何关系和概率分布的一致性引入到MAGCN的一致性嵌入编码器中,进一步简化了聚类任务。
我们的主要贡献有:
1、提出了一种新的多视图属性图卷积网络,用于多视图属性图结构数据的聚类。
2、我们开发了具有注意机制的多视图属性图卷积编码器,以减少多视图图数据的噪声/冗余。此外,还考虑了节点属性和图结构的重构,提高了鲁棒性。
3、一致性嵌入编码器通过探索不同视图的几何关系和概率分布一致性,来提取多个视图之间的一致性信息。
框架分为multi-view attribute graph convolution Encoders 和consistent embedding Encoders两部分。其中multi-view attribute graph convolution Encoders部分:
multi-view attribute graph convolution Encoders
三层编码GCN
编码时
就可以自适应学习不同点的权重,上面得到的S是相关矩阵,可以由这个相关矩阵推理出想要的邻接矩阵。
另外还有三层解码GCN,完全是逆过程
还原到
可以由内积得出还原出来的邻接矩阵为:
由公式(3)和公式(5)的两个图可以做一个图的重构损失
multi-view attribute graph convolution Encoders
把Hm再映射到地位空间得到Zm,这里用的事全连接层,这一段是提取不同view间的相同表示。
得到即所有不同view间的相互差异:
另外,考虑到不仅图要一致,边的权重也应该一致的思路.
以下qij表示点i被归于簇j的概率,Q是一个点数*簇数的矩阵。目的是不仅图要接近,每条边的概率也要接近:
p相当于对q再做一个归一化,除以频率
这样就得到了第三个loss。这里Qm表示Zm对应的概率分布(即对应视角m),P对应全局Z,这里Z是有所有视角加权起来的,权重自适应。
总结以上的三个loss
其中第一项为重建损失,第二项为多视角一致性损失,第三项为总图和每个视角图的概率分布损失。最后是通过总的P确认聚类结果。