自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Brock-123

重建人生的一只灰太郎

  • 博客(30)
  • 资源 (2)
  • 收藏
  • 关注

原创 HTTP总结

参考HTTP简介HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准。HTTP是一个基于TCP/IP通信协议来传递数据(HTML 文件, 图片文件, 查询结果等)。工作原理HTTP协议工作于客户端-服务端架构上。浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发送所有请求。Web服务器有:Apache服务器,IIS服务器(Internet Information Se

2020-06-10 11:15:13 542

原创 gRPC-cpp使用总结(4)

参考gRPC基础:C++通过学习教程中例子,你可以学会如何:在一个 .proto 文件内定义服务.用 protocol buffer 编译器生成服务器和客户端代码.使用 gRPC 的 C++ API 为你的服务实现一个简单的客户端和服务器.为什么使用 gRPC?我们的例子是一个简单的路由映射的应用,它允许客户端获取路由特性的信息,生成路由的总结,以及交互路由信息,如服务器和其他客户端的流量更新。有了 gRPC, 我们可以一次性的在一个 .proto 文件中定义服务并使用任何支持它的语言去

2020-06-09 15:19:37 737

原创 gRPC-cpp使用总结(3)

参考安全认证认证gRPC 被设计成可以利用插件的形式支持多种授权机制。本文档对多种支持的授权机制提供了一个概览,并且用例子来论述对应API,最后就其扩展性作了讨论。支持的授权机制SSL/TLSgRP 集成 SSL/TLS 并对服务端授权所使用的 SSL/TLS 进行了改良,对客户端和服务端交换的所有数据进行了加密。对客户端来讲提供了可选的机制提供凭证来获得共同的授权。OAuth 2.0gRPC 提供通用的机制(后续进行描述)来对请求和应答附加基于元数据的凭证。当通过 gRPC 访问 Goo

2020-06-09 14:42:27 866

原创 gRPC-cpp使用总结(2)

参考gRPC 概念本文档通过对于 gRPC 的架构和 RPC 生命周期的概览来介绍 gRPC 的主要概念。本文是在假设你已经读过文档部分的前提下展开的。针对具体语言细节请查看对应语言的快速开始、教程和参考文档(很快就会有完整的文档)。概览服务定义正如其他 RPC 系统,gRPC 基于如下思想:定义一个服务, 指定其可以被远程调用的方法及其参数和返回类型。gRPC 默认使用 protocol buffers 作为接口定义语言,来描述服务接口和有效载荷消息结构。如果有需要的话,可以使用其他替代方案。

2020-06-09 14:08:38 293

原创 gRPC-cpp使用总结(1)

gRPC 官方文档中文版简介gRPC 是一个高性能、开源和通用的 RPC 框架,面向移动和 HTTP/2 设计。目前提供 C、Java 和 Go 语言版本,分别是:grpc, grpc-java, grpc-go. 其中 C 版本支持 C, C++, Node.js, Python, Ruby, Objective-C, PHP 和 C# 支持.gRPC 基于 HTTP/2 标准设计,带来诸如双向流、流控、头部压缩、单 TCP 连接上的多复用请求等特。这些特性使得其在移动设备上表现更好,更省电和节省

2020-06-09 13:56:36 1072

原创 protobuf开发-cpp版

https://www.jianshu.com/p/d2bed3614259ProtoBuf 官方文档(九)- (C++开发)教程此文翻译自 Protocol Buffers 官方文档 Protocol Buffer Basics: C++ 部分https://links.jianshu.com/go?to=https%3A%2F%2Fdevelopers.google.com%2Fprotocol-buffers%2Fdocs%2FcpptutorialProtocol Buffer Basics:

2020-06-07 22:16:28 378

原创 protobuf使用-概述-总结1

Protocol Buffers 是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化。它很适合做数据存储或 RPC 数据交换格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。目前提供了 C++、Java、Python 三种语言的 API。简介什么是 Google Protocol Buffer? 假如您在网上搜索,应该会得到类似这样的文字介绍:Google Protocol Buffer(简称 Protobuf) 是 Google 公司内部的

2020-06-07 21:01:56 412

原创 GLOG总结

来自Google的Glog是一个应用程序的日志库。它提供基于C++风格的流的日志API,以及各种辅助的宏。打印日志只需以流的形式传给 LOG(level) ,例如:#include <glog/logging.h>int main(int argc, char* argv[]) { // Initialize Google's logging library. google::InitGoogleLogging(argv[0]); // ... LOG(INFO) &lt

2020-06-04 14:39:00 2324

原创 GFlags使用总结

Github  官方文档Gflags简明教程 http://dreamrunner.org/blog/2014/03/09/gflags-jian-ming-shi-yong/GFlags使用文档 http://www.yeolar.com/note/2014/12/14/gflags/简介GFlags是Google开源的一套命令行参数处理的开源库,包括C++的版本和python 版本。和 getopt() 之类的库不同,flag的定义可以散布在各个源码中,而不用放在一起。一个源码文件可以定义一些

2020-06-03 21:28:18 1563

原创 ssh 连接失败解决

SSH 连接失败状态也查询失败参考:http://realtechtalk.com/Linux_Ubuntu_Debian_Missing_privilege_separation_directory_varrunsshd-2236-articles解决办法:ssh-keygen -Amkdir -p /var/run/sshdecho "mkdir -p /var/run/sshd" >> /etc/rc.local需要加 sudo 赋权...

2020-05-22 16:17:19 371

原创 rosjava安装与卸载

卸载rosjavasudo apt-get remove ros-kinetic-rosjava卸载rosjava-buld-toolssudo apt-get remove ros-kinetic-rosjava-build-tools

2020-05-13 17:06:38 362

原创 直观地理解「协方差矩阵」

协方差矩阵在统计学和机器学习中随处可见,一般而言,可视作方差和协方差两部分组成,即方差构成了对角线上的元素,协方差构成了非对角线上的元素。本文旨在从几何角度介绍我们所熟知的协方差矩阵。1.方差和协方差的定义在统计学中,方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度,其中,方差的计算公式为其中,nnn 表示样本量,符号x‾\overline xx 表示...

2019-12-30 15:43:39 3490

转载 卡尔曼滤波

文章目录1.卡尔曼滤波简介2.卡尔曼滤波原理3.卡尔曼滤波的公式3.1五个公式3.2. 公式作用4.卡尔曼滤波的公式推导4.1. 符号说明4.2概念说明4.2.1 高斯分布4.2.2 协方差矩阵4.3. 更新优化的状态估计值4.4. 求优化预测状态4.5. 求卡尔曼增益4.6. 求预测误差协方差矩阵4.7. 求误差协方差矩阵4.8. 加入外界对系统的作用5. 卡尔曼滤波应用1.卡尔曼滤波简介...

2019-12-19 22:46:00 493 1

原创 四元数小总结

四元数记法:一个四元数包含一个标量分量和一个3D向量分量。记标量为w,记向量为v或分开的x,y,z。如下:[w,v][w,(x,y,z)]四元数与复数:四元数扩展了复数系统 ,它使用三个虚部i,j,k。它们的关系如下:i2=j2=k2=ijk=−1;ij=k,ji=−k;ij=k,ji=−k;jk=i,kj=−i;ki=j,ik=−j; i^2=j^2=k^2=ijk=-1;i...

2019-12-19 19:38:17 1660

原创 矩阵

矩阵1.一个普通的矩阵:2.单位矩阵单位矩阵就是右斜角全是1,其他位置是0的矩阵。一个3×3的单位矩阵:3.Transposition(转换)经常看到一个矩阵的右上角有个T的符号,就是Transposition的首字母。4.矩阵与数相乘就是把这个数跟矩阵中的每个数都相乘。5.两个矩阵相乘1.首先对于两个矩阵是否可以相乘是有要求的,假设要计算A矩阵乘以B矩阵,那么A矩阵的行...

2019-12-17 16:06:41 36596

原创 向量

参考的是《游戏和图形学的3D数学入门教程》,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细。1.向量概念具有方向和大小。没有位置观念。一般的2D向量可以写成如[1,3]2.3D中的向量像下图中的向量可以写成[1,-3,7]3.零向量零向量是特殊的向量,他的大小是0,没有具体方向,可以说有任何一个方向。如下图。它跟普通的点又是不一样的。4.一个向量取反一些向量取反后...

2019-12-17 11:05:14 1785

原创 Eigen(7)-Geometry(几何转换)

官方地址传送Space transformations常用1.旋转矩阵(3X3):Eigen::Matrix3d2.旋转向量(3X1):Eigen::AngleAxisd3.四元数(4X1):Eigen::Quaterniond4.平移向量(3X1):Eigen::Vector3d5.变换矩阵(4X4):Eigen::Isometry3dAngleAxis(angle, axis...

2019-12-16 09:02:43 607

原创 Eigen(6)-Linear algebra and decompositions(线性代数和分解)

线性代数、分解介绍如何求解线性系统,计算几种分解,比如LU,QR,SVD等。基本线性求解问题:假设有一个系统方程写成如下矩阵的形式Ax=b Ax=bAx=b其中A,b是矩阵,b也可以是向量,当想要求解x时,可以选择多种分解方式,取决于矩阵A的形式以及考虑的速度和精度,下面是一个简单的例子#include <iostream>#include <Eigen/Dense...

2019-12-13 13:41:40 231

原创 Eigen(5)-Reductions, visitors and broadcasting(规约、迭代和广播)

规约、迭代、广播规约Eigen中规约是指对一个矩阵或数组操作并返回一个标量的函数,常用的是sum()方法,返回矩阵或数组的所有元素的和。#include <iostream>#include <Eigen/Dense>using namespace std;int main(){ Eigen::Matrix2d mat; mat << 1,...

2019-12-13 10:45:25 191

原创 PID控制以及各种控制环节-C语言实现

1 典型环节的微分方程、传递函数及C语言实现方法无论多么复杂的系统,总是可以由简单的子系统构成,分析典型环节的特点,其目的是为了通过典型环节的特点分析更为复杂的系统,实际工程应用中,真正完全通过理论的方式建立模型是非常困难的,实际的模型建立过程是一个复杂的过程,需要通过假设、验证、参数实验给定等多种手段分析完善模型内容,利用实验获取模型的方法又称作系统辨识技术,在下一节中将重点讲解。假设的过程,...

2019-12-12 10:28:23 6999 2

原创 Eigen(4)-Block operation and Advanced initialzation(块操作与高级初始化)

块操作块操作(矩阵子块)块是矩阵或阵列的矩形部分。块表达式既可以用作右值,也可以用作左值。与Eigen表达式一样,只要让编译器进行优化,此抽象的运行时成本为零。Eigen最通用的块操作是.block(),有两种版本,如下Block operationVersion constructing a dynamic-size block expressionVersion const...

2019-12-08 16:31:08 460

原创 Eigen(3)-The Array class and coefficient-wise operations(行列式)

Eigen数组类数组类和系数运算什么是数组类/行列式与用于线性代数的Matrix类相反,Array类提供了通用数组。此外,Array类提供了一种执行逐系数运算的简便方法,该运算可能没有线性代数含义,例如,向数组中的每个系数添加一个常数或逐个系数地乘以两个数组。数组类型Array是具有与Matrix相同的模板参数的类模板。与Matrix一样,前三个模板参数是必需的:Array<ty...

2019-12-07 21:48:20 435

原创 Eigen(2)-Matrix and vector arithmetic(矩阵与向量数学计算)

矩阵和向量算法本文主要是Eigen中矩阵和向量的算术运算,在Eigen中的这些算术运算重载了C++的+,-,*,所以使用起来非常方便。1.矩阵的运算Eigen提供+、-、一元操作符“-”、+=、-=二元操作符+/-表示两矩阵相加(矩阵中对应元素相加/减,返回一个临时矩阵): B+C 或 B-C;一元操作符-表示对矩阵取负(矩阵中对应元素取负,返回一个临时矩阵): -C;组合操作法+=或...

2019-12-07 21:30:03 626

原创 Eigen(1)-The Matrix class(矩阵类)

点击这里开始进入Eigen官网参考Eigen官网叙述ps:老老实实的看文档,才能熟悉和了解一个库…Eigen Matrix 简述在Eigen中,所有的matrices 和vectors 都是模板类Matrix 的对象,Vectors 只是一种特殊的矩阵,行或者列的数目为1.Matrix的前三个模板参数,Matrix 类有6个模板参数,现在我们了解前三个足够。剩下的三个参数都有默认值。...

2019-11-28 16:11:52 400

原创 C++ : std::thread 多线程<1>

1. thread-join()必要条件:添加 lthread 编译支持选项。join()函数等待线程函数运行完毕,阻塞向下运行主函数;#include <iostream>#include <thread>#include <unistd.h> using namespace std;void thread01(){ for (i...

2019-09-11 20:48:14 251

原创 现代C++的回调技术--std::bind+std::function

参考自《Linux多线程服务端编程》在此详细叙述使用std::bind和std::function在C++对象之间的用法,用以配合解决事件驱动的编程模型1\std::function2\std::bind3\使用std::bind和std::function回调技术4\std::bind绑定到虚函数时会表现出来的多态行为,解决继承时的虚函数指带不清的问题std::functions...

2019-08-05 18:35:07 677

转载 CANopen协议介绍(讲义)[转载]

 很长一段时间以来,很多人问我CANopen总线优势到底在什么地方,我也大体的给了口头的讲述,但是比较笼统,没办法做到详细解释,加上纯技术的话语比较晦涩,遇上内行还能多聊几句,如果是刚接触的,那就是云里雾里了。这次正好要进行公司业务员培训,要讲讲CANopen,在整理过程中把我的讲义贴出来,希望能帮到大家,以下内容是我讲课的口述内容,比较白话,不能作为资料,大家见谅,鉴于我整理也比较辛苦,也算个小...

2018-07-22 15:56:32 11312 7

转载 C语言—理解函数指针以及它的用法

什么是函数指针?指针前面已经写过好多,自以为认识的差不多了,但是今天突然看到一个问题,写一个函数指针,函数指针就是一个指向函数首地址的指针,接下来写几个指针:写一个函数指针写一个函数指针数组写一个指向函数指针数组的指针看到这三个是不是觉得挺绕~==》定义函数指针举个例子看以下代码:#include&lt;stdio.h&gt;#include&lt;Windows.h&gt;void fun(){...

2018-07-16 10:35:30 376

转载 深入浅出剖析C语言函数指针与回调函数(一)【转】

本文转载自:http://blog.csdn.net/morixinguan/article/details/65494239关于静态库和动态库的使用和制作方法。http://blog.csdn.NET/morixinguan/article/details/52451612今天我们要搞明白的一个概念叫回调函数。什么是回调函数?百度的权威解释如下:回调函数就是一个通过函数指针调用的函数。如果你把函...

2018-07-16 10:34:32 317

转载 C语言定义数组时使用枚举作为数组的下标

昨天写代码被人告知还有这种写法,很神奇。通常情况下定义数组都是顶一个什么类型的数组然后下标或者脚标就是从0开始++++int array[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};1但是用0-N这种整形数字做下标可读性非常不高,如果这个数组里保存的数据比较复杂,那么这种硬编码的下标方式非常的危险。所以这里通常都使用枚举变量作为下标来访问数组。如下“`static c...

2018-07-16 10:33:53 1035

四元数与三维旋转.pdf

关于四元数和三维旋转的数学知识详解,包括复数基础,向量基础计算,向量分解旋转计算,四元数字的构成,四元数插值slerp等内容,另外简要介绍了样条插值等内容

2019-12-19

LED生产作业书

好啊个的粉红色符合规范进化过程和风格和的风格橘黄色的风格和几十个可省略号

2011-11-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除