直观地理解「协方差矩阵」

  • 协方差矩阵在统计学和机器学习中随处可见,一般而言,可视作方差和协方差两部分组成,即方差构成了对角线上的元素,协方差构成了非对角线上的元素。本文旨在从几何角度介绍我们所熟知的协方差矩阵。

1.方差和协方差的定义

在统计学中,方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度,其中,方差的计算公式为
在这里插入图片描述
其中, n n n 表示样本量,符号 x ‾ \overline x x 表示观测样本的均值,这个定义在初中阶段就已经开始接触了。
在此基础上,协方差的计算公式被定义为
在这里插入图片描述
在公式中,符号 x ‾ \overline x x y ‾ \overline y y 分别表示两个随机变量所对应的观测样本均值,据此,我们发现:方差 σ x 2 \sigma_x^2 σx2可视作随机变量 x x x关于其自身的协方差 σ ( x , x ) \sigma(x,x) σ(x,x).

2.从方差/协方差到协方差矩阵

根据方差的定义,给定 d d d个随机变量 x k , k = 1 , 2 , . . . d x_k,k=1,2,...d xk,k=1,2,...d,则这些随机变量的方差为
在这里插入图片描述
其中,为方便书写, x k i x_ki xki表示随机变量 x k x_k xk 中的第 i i i 个观测样本, n n n 表示样本量,每个随机变量所对应的观测样本数量均为 n n n
对于这些随机变量,我们还可以根据协方差的定义,求出两两之间的协方差,即
在这里插入图片描述
因此,协方差矩阵为
在这里插入图片描述
其中,对角线上的元素为各个随机变量的方差,非对角线上的元素为两两随机变量之间的协方差,根据协方差的定义,我们可以认定:矩阵 ∑ \sum 为对称矩阵(symmetric matrix),其大小为 x × x x\times x x×x

3.多元正态分布与线性变换

假设一个向量 x x x 服从均值向量为 u u u 、协方差矩阵为 ∑ \sum 的多元正态分布(multi-variate Gaussian distribution),则
在这里插入图片描述
令该分布的均值向量为 u = 0 u=0 u=0,由于指数项外面的系数 ∣ 2 π ∑ ∣ − 1 / 2 |2\pi\sum|^{-1/2} 2π1/2通常作为常数,故可将多元正态分布简化为
在这里插入图片描述
再令 x = ( y , z ) T x=(y,z)^T x=(y,z)T ,包含两个随机变量 y y y z z z ,则协方差矩阵可写成如下形式:

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

plt.style.use('ggplot')
plt.rcParams['figure.figsize'] = (12, 8)


# Normal distributed x and y vector with mean 0 and standard deviation 1
x = np.random.normal(0, 1, 500)
y = np.random.normal(0, 1, 500)
X = np.vstack((x, y)).T

plt.scatter(X[:, 0], X[:, 1])
plt.title('Generated Data')
plt.axis('equal');

用单位矩阵(identity matrix) I I I 作为协方差矩阵,随机变量 y y y z z z的方差均为1,则生成若干个随机数如图1所示
图1 标准的二元正态分布
在生成的若干个随机数中,每个点的似然为
在这里插入图片描述
对图1中的所有点考虑一个线性变换(linear transformation): t = A x t=Ax t=Ax,我们能够得到图2.
图2 经过线性变换的二元正态分布,先将图1的纵坐标压缩0.5倍,再将所有点逆时针旋转30°得到
在线性变换中,矩阵 [公式] 被称为变换矩阵(transformation matrix),为了将图1中的点经过线性变换得到我们想要的图2,其实我们需要构造两个矩阵:
尺度矩阵(scaling matrix):
在这里插入图片描述
旋转矩阵(rotation matrix)
在这里插入图片描述
其中, [公式] 为顺时针旋转的度数。

变换矩阵、尺度矩阵和旋转矩阵三者的关系式: A = R S A=RS A=RS

在这个例子中,尺度矩阵为
在这里插入图片描述
旋转矩阵为
在这里插入图片描述在这里插入图片描述
故变换矩阵为
在这里插入图片描述

另外,需要考虑的是,经过了线性变换, [公式] 的分布是什么样子呢?
x = A − 1 t x=A^-1t x=A1t 带入前面给出的似然
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
由此可以得到,多元正态分布的协方差矩阵为
在这里插入图片描述
在这里插入图片描述

4.协方差矩阵的特征值分解

回到我们已经学过的线性代数内容,对于任意对称矩阵 ∑ \sum ,存在一个特征值分解(eigenvalue decomposition, EVD):
∑ = U A U T \sum=UAU^T =UAUT
其中, U U U的每一列都是相互正交的特征向量,且是单位向量,满足 U T U = I U^TU=I UTU=I Λ \Lambda Λ对角线上的元素是从大到小排列的特征值,非对角线上的元素均为0。
当然,这条公式在这里也可以很容易地写成如下形式:
∑ = ( U Λ 1 / 2 ) ( U Λ 1 / 2 ) T = A A T \sum=(U\Lambda^{1/2})(U\Lambda^{1/2})^T=AA^T =(UΛ1/2)(UΛ1/2)T=AAT
其中, A = U Λ 1 / 2 A=U\Lambda^{1/2} A=UΛ1/2,因此,通俗地说,任意一个协方差矩阵都可以视为线性变换的结果。
在上面的例子中,特征向量构成的矩阵为
在这里插入图片描述
特征值构成的矩阵为
在这里插入图片描述
到这里,我们发现:多元正态分布的概率密度是由协方差矩阵的特征向量控制旋转(rotation),特征值控制尺度(scale),除了协方差矩阵,均值向量会控制概率密度的位置,在图1和图2中,均值向量为 [公式] ,因此,概率密度的中心位于坐标原点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值