#include <iostream>
using namespace std;
#define MAXN 100
struct Node
{
int left,right,mid;
int cover;//表示给数据是否存在
}seg_tree[4*MAXN];//数组一般开到4倍长度
void build(int l,int r,int num)//l,r为当前结点的左右端点,num为结点在数组中的编号
{
cout<<num<<" "<<l<<" "<<r<<endl;
seg_tree[num].left=l;
seg_tree[num].right=r;
seg_tree[num].mid=(l+r)/2;
seg_tree[num].cover=0;
if(l+1!=r)//若不是叶子结点
{
build(l,seg_tree[num].mid,2*num);
build(seg_tree[num].mid,r,2*num+1);
}
}
void insert(int l,int r,int num)
{
if(seg_tree[num].left==l&&seg_tree[num].right==r)
{
//若插入的线段树完全覆盖当前结点所表示的线段
seg_tree[num].cover=1;
//cout<<num<<endl;
return;
}
if(r<=seg_tree[num].mid)
{
//当前结点的左子结点所代表的线段包含插入的线段
insert(l,r,2*num);
}
else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含插入的线段
insert(l,r,2*num+1);
else
{
//插入的线段跨越了当前结点所代表线段的中点
insert(l,seg_tree[num].mid,2*num);
insert(seg_tree[num].mid,r,2*num+1);
}
}
bool del(int l,int r,int num)
{
if(seg_tree[num].left+1==seg_tree[num].right)
{
//删除到叶结点的情况
int f = seg_tree[num].cover;
seg_tree[num].cover=0;
return f;
}
if(seg_tree[num].cover==1)//当前结点不为叶结点且被覆盖
{
seg_tree[num].cover=0;//该结点删除
seg_tree[2*num].cover=1;//子结点置1
seg_tree[2*num+1].cover=1;//子结点置1
}
if(r<=seg_tree[num].mid)//当前结点的左子结点所代表的线段包含删除的线段
return del(l,r,2*num);
else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含删除的线段
{
return del(l,r,2*num+1);
}
else
return del(l,seg_tree[num].mid,2*num)&&
del(seg_tree[num].mid,r,2*num+1);
}
using namespace std;
#define MAXN 100
struct Node
{
int left,right,mid;
int cover;//表示给数据是否存在
}seg_tree[4*MAXN];//数组一般开到4倍长度
void build(int l,int r,int num)//l,r为当前结点的左右端点,num为结点在数组中的编号
{
cout<<num<<" "<<l<<" "<<r<<endl;
seg_tree[num].left=l;
seg_tree[num].right=r;
seg_tree[num].mid=(l+r)/2;
seg_tree[num].cover=0;
if(l+1!=r)//若不是叶子结点
{
build(l,seg_tree[num].mid,2*num);
build(seg_tree[num].mid,r,2*num+1);
}
}
void insert(int l,int r,int num)
{
if(seg_tree[num].left==l&&seg_tree[num].right==r)
{
//若插入的线段树完全覆盖当前结点所表示的线段
seg_tree[num].cover=1;
//cout<<num<<endl;
return;
}
if(r<=seg_tree[num].mid)
{
//当前结点的左子结点所代表的线段包含插入的线段
insert(l,r,2*num);
}
else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含插入的线段
insert(l,r,2*num+1);
else
{
//插入的线段跨越了当前结点所代表线段的中点
insert(l,seg_tree[num].mid,2*num);
insert(seg_tree[num].mid,r,2*num+1);
}
}
bool del(int l,int r,int num)
{
if(seg_tree[num].left+1==seg_tree[num].right)
{
//删除到叶结点的情况
int f = seg_tree[num].cover;
seg_tree[num].cover=0;
return f;
}
if(seg_tree[num].cover==1)//当前结点不为叶结点且被覆盖
{
seg_tree[num].cover=0;//该结点删除
seg_tree[2*num].cover=1;//子结点置1
seg_tree[2*num+1].cover=1;//子结点置1
}
if(r<=seg_tree[num].mid)//当前结点的左子结点所代表的线段包含删除的线段
return del(l,r,2*num);
else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含删除的线段
{
return del(l,r,2*num+1);
}
else
return del(l,seg_tree[num].mid,2*num)&&
del(seg_tree[num].mid,r,2*num+1);
}