线段树

#include <iostream>

using namespace std;
#define MAXN 100
struct Node
{
    int left,right,mid;
    int cover;//表示给数据是否存在
}seg_tree[4*MAXN];//数组一般开到4倍长度
void build(int l,int r,int num)//l,r为当前结点的左右端点,num为结点在数组中的编号
{
    cout<<num<<" "<<l<<" "<<r<<endl;
    seg_tree[num].left=l;
    seg_tree[num].right=r;
    seg_tree[num].mid=(l+r)/2;
    seg_tree[num].cover=0;
    if(l+1!=r)//若不是叶子结点
    {
        build(l,seg_tree[num].mid,2*num);
        build(seg_tree[num].mid,r,2*num+1);
    }
}
void insert(int l,int r,int num)
{
    if(seg_tree[num].left==l&&seg_tree[num].right==r)
    {
        //若插入的线段树完全覆盖当前结点所表示的线段
        seg_tree[num].cover=1;
        //cout<<num<<endl;
        return;
    }
    if(r<=seg_tree[num].mid)
    {
        //当前结点的左子结点所代表的线段包含插入的线段
        insert(l,r,2*num);
    }
    else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含插入的线段
            insert(l,r,2*num+1);
    else
    {
        //插入的线段跨越了当前结点所代表线段的中点
        insert(l,seg_tree[num].mid,2*num);
        insert(seg_tree[num].mid,r,2*num+1);
    }
}
bool del(int l,int r,int num)
{
    if(seg_tree[num].left+1==seg_tree[num].right)
    {
        //删除到叶结点的情况
        int f = seg_tree[num].cover;
        seg_tree[num].cover=0;
        return f;
    }
    if(seg_tree[num].cover==1)//当前结点不为叶结点且被覆盖
    {
        seg_tree[num].cover=0;//该结点删除
        seg_tree[2*num].cover=1;//子结点置1
        seg_tree[2*num+1].cover=1;//子结点置1
    }
    if(r<=seg_tree[num].mid)//当前结点的左子结点所代表的线段包含删除的线段
        return del(l,r,2*num);
    else if(l>=seg_tree[num].mid)//当前结点的右子结点所代表的线段包含删除的线段
    {
        return del(l,r,2*num+1);
    }
    else
        return del(l,seg_tree[num].mid,2*num)&&
               del(seg_tree[num].mid,r,2*num+1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值