ChunJun 是一款稳定、易用、高效、批流一体的数据集成框架,⽀持海量数据的同步与计算。ChunJun 既可以采集静态的数据,比如 MySQL,HDFS 等,也可以采集实时变化的数据,比如 binlog,Kafka 等。同时 ChunJun 也是一个支持原生 FlinkSQL 所有语法和特性的计算框架。
经过5年的迭代和开发,ChunJun 已经帮助很多公司快速进行数据整合,并解决数据开发人员需要过多进行繁琐的数据抽取工作的问题,可以专注在企业业务场景的构建。
之前的内容当中,我们已经介绍过 ChunJun 的技术力、优势,及如何提交 pr、Issue 的方法。作为「chunJun 新手入门」系列的第三篇,本文将为大家介绍如何配置一个 ChunJun 任务以及通过 ChunJun Client 端提交任务的流程等内容,教会大家更好地玩转 ChunJun。
ChunJun 新手入门
ChunJun 地址
官网:
https://dtstack.github.io/chunjun/
GitHub:
https://github.com/DTStack/chunjun
Gitee:
https://gitee.com/dtstack_dev_0/chunjun
配置一个 ChunJun 任务
ChunJun 的任务脚本⽀持两种模式:Sync(Json) 和 SQL,前者配置更加丰富,底层使⽤的是 StreamAPI,在同步场景使⽤的较多;后者借助 Flink SQL 本身的能⼒,利⽤ SQL 实现对数据的聚合等计算操作,底层使⽤的是 TableAPI。
Sync
同步任务使⽤的 Json 格式的配置⽂件,通过配置 Source/Sink 来完成数据的 EL 流程。⼀个同步任务的基本结构如下:
{
"job": {
"content": [
{
"nameMapping": {},
"reader": {
"parameter": {},
"name": "reader"
},
"writer": {
"parameter": {},
"name": "writer"
},
"restoration": {
"cache": {
"properties": {}
},
"workerMax": 3,
"workerSize": 3,
"workerNum": 2,
"ddl": {
"properties": {}
}
}
}
],
"setting": {
"restore": {},
● Job 整个任务的参数配置
1)同步任务的算⼦配置,如 Reader/Writer/Restoration 等。
• nameMapping:表名映射配置,⽤在 CDC 场景
• reader:同步任务 reader 的配置
• writer:同步任务writer的配置
• restoration:数据还原相关配置
2)setting 系统的⼀些参数配置,如增量同步(restore)、流控(speed)等。
SQL
ChunJun 的 SQL 任务直接沿⽤了 FlinkSQL 的引擎。详细⽂档请看:
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/overview/
● DDL
CREATE TABLE xx(xxx) WITH(xxx);
CREATE VIEW xxx
● DML
INSERT INTO xxx;
获取 ChunJun
前置准备
· Java(JDK8);
· Maven(3.6.3,版本太低会找不到对应的 jar,另外,⾼版本的 Maven 对仓库地址强制要求是 HTTPS,会存在仓库地址访问失败的情况)
ChunJun 下载
● release 下载
ChunJun release 下载地址:
https://github.com/DTStack/chunjun/releases
● 源码编译
源码下载:
https://github.com/DTStack/chunjun.git
ChunJun 是通过 Maven 来进⾏代码依赖管理,对应的打包命令是:
mvn clean package -Dmaven.test.skip
ChunJun 使⽤的是 spotless 插件来进⾏代码⻛格管理,在修改源码之后打包,需要对源码先执⾏下 mvn spotless:apply 命令来进⾏代码格式化,否则会出现格式化不合规问题。
● 目录结构
chunjun-dist
├── chunjun-core.jar
├── connector
├── ddl
├── dirty-data-collector
├── docker-build
├── metrics
└── restore-plugins
通过 ChunJun Client 端提交任务
通过 LocalTest、Standalone、Yarn Session、Yarn Perjob 四种模式为大家介绍如何通过ChunJun Client 端提交任务。
LocalTest 模式(适⽤于本地调试)
Local Test 模式是针对开发者同学⽤来进行本地测试验证的模块,只需要修改 main() 中的 jobPath 路径即可,需要注意,同步任务的脚本请以 json ⽂件结尾,计算任务的脚本请以 sql ⽂件结尾。
Standalone 模式
● 环境准备
下载 Flink 并解压
wget "http://archive.apache.org/dist/flink/flink-<flink.version>/flink-<flink.version>-bin-scala_<scala.version>.tgz"
tar -zxvf flink-<flink.version>-bin-scala_<scala.version>.tgz
● 配置 ChunJun
1)下载 ChunJun 并解压
wget "https://github.com/DTStack/chunjun/releases/download/<chunjun-tag>/chunjun-dist.tar.gz"
tar -zxvf chunjun-dist.tar.gz
2)将 ChunJun-Dist 内容复制到 Flink Lib ⽬录下并启动 Flink Standalone 集群
# copy the chunjun-dist to the flink_lib
cp -r chunjun-dist $FLINK_HOME/lib
# start flink standalone cluster
sh $FLINK_HOME/bin/start-cluster.sh
3)在 Flink classpath 中可以看到 ChunJun 相关 jar,表示启动成功;
● 提交任务
sh $CHUNJUN_DIST/bin/chunjun-standalone.sh <task-script path>
命令执⾏成功之后,即可在 Flink WEB UI 中看到对应的任务。
Yarn Session 模式
● 环境准备
1)下载 ChunJun 并解压
wget "https://github.com/DTStack/chunjun/releases/download/<chunjun-tag>/chunjun-dist.tar.gz"
tar -zxvf chunjun-dist.tar.gz
2)下载 ChunJun 并提交到 Yarn Session 集群中
sh $FLINK_HOME/bin?yarn-session.sh -t $CHUNJUN_DIST -d
· 执⾏命令成功之后,即可在Yarn Session ⽇志,对应Classpath 部分中看到 ChunJun 相关的jar, 表示启动成功;
· 记录当前 Yarn Session 的,并将任务提交到指定 Session中;
sh ./bin/chunjun-yarn-session.sh -job <task-script path> -confProp {\"yarn.application.id\":\"<ApplicationID>\"}
之后就可以在 Yarn Session 中看到对应的任务,注意以下两点:
• 如果将 yarn.application.id 配置到 flink-conf.yaml,那么使⽤这份配置⽂件的任务都会提交到这个 id 的 session 中;
• 如果将 yarn.application.id 配置到 confProp,那么仅有当前任务会提交到这个 id 的 session 中。
Yarn Perjob 模式
后续会废弃这种模式,改⽤ Application 模式。
● 环境准备
下载 Flink 并解压
wget "http://archive.apache.org/dist/flink/flink-<flink.version>/flink-<flink.version>-bin-scala_<scala.version>.tgz"
tar -zxvf flink-<flink.version>-bin-scala_<scala.version>.tgz
● 配置 ChunJun
下载 ChunJun 并解压
wget "https://github.com/DTStack/chunjun/releases/download/<chunjun-tag>/chunjun-dist.tar.gz"
tar -zxvf chunjun-dist.tar.gz
● 提交任务
sh ./bin/chunjun-yarn-perjob.sh -job <task-script path>
执⾏成功之后,可以在 Yarn Web UI 中看到相关任务。
调试 ChunJun 代码
调试代码能够更好地定位问题,并解决问题。下⾯将为开发者介绍如何快速调试 ChunJun 代码:
本地调试
ChunJun 为开发者准备了⼀个 local-test 模块,替换 main ⽅法中的 jobPath 即可。需要提前将相关插件配置在 local-test 模块的 pom 中,部分插件相互存在依赖冲突,需要开发者关注下。
远程调试
在 flink-conf.yaml 中配置 debug 端⼝即可(端⼝号可以⾃⼰定义)。
# debug jobmanager
env.java.opts.jobmanager: -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005
# debug taskmanager
env.java.opts.taskmanager: -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5006
《数据治理行业实践白皮书》下载地址:https://fs80.cn/380a4b
想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szcsdn
同时,欢迎对大数据开源项目有兴趣的同学加入我们,一起交流最新开源技术信息,号码:30537511,项目地址:https://github.com/DTStack