Text To SQL 指的是将自然语言转化为能够在关系型数据库中执行的结构化查询语言(简称 SQL)。近年来,伴随人工智能大模型技术的不断进步,Text To SQL 任务的成功率显著提升,这得益于大模型的推理、理解以及指令遵循等能力。
对于大数据平台来说,集成 Text To SQL 功能意义非凡。首先,这能够大幅优化用户体验;其次,Text To SQL 功能能够提高数据开发人员的工作效率,他们能够凭借自然语言描述来完成 SQL 任务的开发,进而极大地节省学习和编写复杂 SQL 语句的时间;最后,Text To SQL 功能降低了数据库查询的门槛,使得更多非技术人员能够参与到数据库查询工作中,让更多人得以享受大数据带来的便利。
本文将探讨袋鼠云在 Text To SQL 领域的探索与实践,分享如何实现更高效、更准确的自然语言到 SQL 的转换。
基于 LLM 实现 Text To SQL
设计基于大模型(LLM)的 Text To SQL 系统是一项复杂且精细的任务,包括多个步骤和环节,每个步骤都需要我们精心设计和处理。首先,我们需要将数据库中表的元信息进行组织。此步骤涉及到将每一个表的详细信息,如字段名称、类型、关系等,写入到向量数据库中,这样就可以为后续的 SQL 生成提供必要的信息,这一步对于后续的 SQL 生成至关重要。
接着,我们需要对用户输入的自然语言加以理解。在这一步,我们将会运用先进的 embedding 模型。凭借这种模型,能够将用户输入的语言实施向量化处理,把每一个词或者词组转化为一个具备特定维度的向量。随后,我们会前往向量数据库中展开查找,匹配相关的表元数据信息,如此一来,我们便能知晓用户的查询意图与哪些表存在关联。
最后,我们把上一步匹配所得的表元数据信息与用户的问题加以合并,生成最终的