统计学习方法第四章

朴素贝叶斯法

设输入空间 X ⊆ R n \mathcal{X} \subseteq \mathbf{R}^{n} XRn n n n 维向量的集合, 输出空间为类标记集合 Y = \mathcal{Y}= Y= { c 1 , c 2 , ⋯   , c K } \left\{c_{1}, c_{2}, \cdots, c_{K}\right\} {c1,c2,,cK} 。输入为特征向量 x ∈ X x \in \mathcal{X} xX, 输出为类标记(class label) y ∈ Y ∘ X y \in \mathcal{Y}_{\circ} X yYX是定义在输入空间 X \mathcal{X} X 上的随机向量, Y Y Y 是定义在输出空间 Y \mathcal{Y} Y 上的随机变量。 P ( X , Y ) P(X, Y) P(X,Y) X X X Y Y Y 的联合概率分布。

c i c_{i} ci : Y Y Y的集合中的元素

假设 x ( j ) x^{(j)} x(j) 可取值有 S j S_{j} Sj

j j j 个特征 x ( j ) x^{(j)} x(j) 可能取值的集合为 { a j 1 , a j 2 , ⋯   , a j S j } \left\{a_{j 1}, a_{j 2}, \cdots, a_{j S_{j}}\right\} {aj1,aj2,,ajSj}

a j l a_{j l} ajl 是第 j j j 个特征可能取的第 l l l 个值

极大似然估计

  1. 先验概率

    • P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , ⋯   , K P\left(Y=c_{k}\right)=\frac{\sum_{i=1}^{N} I\left(y_{i}=c_{k}\right)}{N}, \quad k=1,2, \cdots, K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,,K
  2. 条件概率

    • P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) ∑ i = 1 N I ( y i = c k ) P\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)=\frac{\sum_{i=1}^{N} I\left(x_{i}^{(j)}=a_{j l}, y_{i}=c_{k}\right)}{\sum_{i=1}^{N} I\left(y_{i}=c_{k}\right)} P(X(j)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xi(j)=ajl,yi=ck)
      j = 1 , 2 , ⋯   , n ; l = 1 , 2 , ⋯   , S j ; k = 1 , 2 , ⋯   , K j=1,2, \cdots, n ; \quad l=1,2, \cdots, S_{j} ; \quad k=1,2, \cdots, K j=1,2,,n;l=1,2,,Sj;k=1,2,,K
  3. 判断类

    • y = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} \mid Y=c_{k}\right) y=argmaxckP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

贝叶斯估计

  1. 先验概率
    • P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ P_{\lambda}\left(Y=c_{k}\right)=\frac{\sum_{i=1}^{N} I\left(y_{i}=c_{k}\right)+\lambda}{N+K \lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ
  2. 条件概率
    • P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P_{\lambda}\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)=\frac{\sum_{i=1}^{N} I\left(x_{i}^{(j)}=a_{j l}, y_{i}=c_{k}\right)+\lambda}{\sum_{i=1}^{N} I\left(y_{i}=c_{k}\right)+S_{j} \lambda} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ
  3. 判断类
    • y = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} \mid Y=c_{k}\right) y=argmaxckP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

贝叶斯估计补充:

  1. 验证其为概率分布
    • P λ ( X ( j ) = a j l ∣ Y = c k ) > 0 P_{\lambda}\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)>0 Pλ(X(j)=ajlY=ck)>0
      ∑ l = 1 S j P ( X ( j ) = a j l ∣ Y = c k ) = 1 \sum_{l=1}^{S_{j}} P\left(X^{(j)}=a_{j l} \mid Y=c_{k}\right)=1 l=1SjP(X(j)=ajlY=ck)=1
  2. λ > 0 {\lambda>0} λ>0
  3. S j S_{j} Sj x ( j ) x^{(j)} x(j) 可取值的数量
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值