这一章主要讲了朴素贝叶斯方法,书上的介绍比较简单,但是搞定第二个习题的过程中吃了很多苦头。
4.1 用极大似然估计法推出朴素贝叶斯法中的概率估计公式(4.8)及公式(4.9)
证明:
题干中要推导的两个公式分别如下:
P(Y−ck)=∑Ni=1I(yi=ck)N,k=1,2,…,K
P(X(j)=ajl|Y=ck)=∑Ni=1I(x(j)i=ajl,yi=ck)∑Ni=1I(yi=ck)
这两个公式的推导过程很相似,所以这里只解决第一个(偷下懒,码公式很麻烦的┑( ̄Д  ̄)┍)
设 P(Y=ck)=p ,同时记 ∑Ni=1I(yi=ck)=M 。那么独立同分布随机抽取 N