《统计学习方法》第4章 课后题答案

本文详细介绍了《统计学习方法》第4章中的朴素贝叶斯方法,重点解析了利用极大似然估计法推导公式(4.8)和(4.9),以及使用贝叶斯估计法证明公式(4.10)和(4.11)。在解题过程中,讨论了不同证明策略并引用了StackExchange上的解答。
摘要由CSDN通过智能技术生成

这一章主要讲了朴素贝叶斯方法,书上的介绍比较简单,但是搞定第二个习题的过程中吃了很多苦头。


4.1 用极大似然估计法推出朴素贝叶斯法中的概率估计公式(4.8)及公式(4.9)

证明:
题干中要推导的两个公式分别如下:

P(Yck)=Ni=1I(yi=ck)N,k=1,2,,K

P(X(j)=ajl|Y=ck)=Ni=1I(x(j)i=ajl,yi=ck)Ni=1I(yi=ck)

这两个公式的推导过程很相似,所以这里只解决第一个(偷下懒,码公式很麻烦的┑( ̄Д  ̄)┍)

P(Y=ck)=p ,同时记 Ni=1I(yi=ck)=M 。那么独立同分布随机抽取 N</

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值