基于科大讯飞星火大模型Spark 4.0 Ultra的微信聊天机器人搭建教程 目前,办公场景中,员工需要与不同的人交谈,而微信作为其中的桥梁。随着如今工作越来越繁重,面对不同的人进行交谈已经是应接不暇,急需一个AI聊天机器人来帮助人们从繁忙的聊天中解放出来。
自监督表征学习方法——DINO方法 在这项工作中,我们展示了自监督预训练一个标准ViT模型的潜力,实现的性能是与为此设置设计的最佳凸网相媲美的。我们还看到了两个可以在未来应用中利用的特性:k-NN分类中特征的质量具有图像检索的潜力,其中ViT已经显示出了有希望的结果。然而,本文的主要结果是,我们有证据表明,自我监督学习可能是开发一个基于的bert样模型的关键ViT。我们将我们的发现实现到一个简单的自我监督的方法中,称为DINO,我们将其解释为一种没有标签的自蒸馏形式。在上面,我们展示了经过监督和DINO训练的ViT-S/8的结果口罩。
单通道说话人语音分离——DPRNN(Dual-Path Recurrent Neural Network) 近年来,基于深度学习的语音分离的研究证明了时域方法优于传统的基于时频的方法。与时频域方法不同,时域分离系统通常接收由大量时间步长组成的输入序列,这给极长序列的建模带来了挑战。传统的递归神经网络(RNNs)由于优化困难,对如此长的序列建模无效,而一维卷积神经网络(一维CNNs)在其接受域小于序列长度时,无法进行话语级序列建模。
单通道说话人语音分离——Conv-TasNet(Convolutional Time-domain audio separation Network) 在真实的声学环境中,鲁棒的语音处理通常需要自动的语音分离。由于这一研究课题对语音处理技术的重要性,人们已经提出了许多方法来解决这一问题。然而,语音分离的准确性,特别是对新演讲者,仍然不够。
自监督表征学习方法——BYOL(Bootstrap Your Own Latent) 学习良好的图像表示是计算机视觉中的一个关键挑战,因为它允许对下游任务进行有效的训练。许多不同的训练方法被提出来学习这种表征,通常依赖于视觉借口任务。 其中,最先进的对比方法是通过减少同一图像的不同增强视图的表示之间的距离和增加来自不同图像的增强视图的表示(负对)之间的距离来训练的。这些方法需要仔细处理负对,通过依赖大批量、内存库或定制的挖掘策略来检索负对。此外,它们的性能严重取决于图像增强的选择。
自监督学习之掩码自动编码器(Masked Autoencoders, MAE)——音频识别方面 在这项工作中,主要研究了听的方面,即音频识别方面,如Audioset(规模最大的音频数据集),环境声识别(ESC-50),语音指令识别(SPC-2, SPC-1),说话人识别(VoxCeleb)。
深度聚类方法之跨实例引导的对比聚类(Cross-instance guided Contrastive Clustering,C3) 该方法是在对比聚类(Contrastive Clustering,CC)上面的改进。
无监督聚类表征学习方法之对比学习(Contrastive Learning)——simclr方法 对比学习是一种自监督学习方法,用于在没有标签的情况下,通过让模型学习哪些数据点相似或不同来学习数据集的一般特征。
在pytorch上利用GAN网络实现0-9数字生成 数据集来自torchvision的dataset的MNIST手写0-9数据集(28x28)生成器(Generator)和判别器(Discriminator)
统计学习方法——第10章 隐马尔可夫模型(个人笔记) 统计学习方法——第10章 隐马尔可夫模型(个人笔记)参考《统计学习方法》(第二版)李航10.1 隐马尔可夫模型的基本概念10.1.1 隐马尔可夫模型的定义定义10.1(隐马尔可夫模型)隐马尔科夫模型是关于时序的概率模型,描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测从而产生观测随机序列的过程。隐藏的马尔科夫链随机生成的状态序列,称为状态序列(state sequence);每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列(observat
统计学习方法——第9章 EM算法及其推广(个人笔记) 统计学习方法——第9章 EM算法及其推广(个人笔记)参考《统计学习方法》(第二版)李航EM算法是一种迭代算法,每次迭代由两步完成:E步,求期望;M步,求极大。9.1 EM算法的引入概率模型有观测变量,又含有隐变量或潜在变量。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法。9.1.1 EM算法例子(三硬币模型)假设有三枚硬币,分别记作A,B,C,这些硬币正面出现的概率分别是。进行如下掷硬币实验:先掷硬币A,根据其结果选出硬币B或C,正面选B,反面
统计学习方法——第8章 提升方法(个人笔记) 统计学习方法——第8章 提升方法(个人笔记)参考《统计学习方法》(第二版)李航8.1 提升方法AdaBoost算法8.1.1 提升方法的基本思路基本思想:对于一个复杂任务,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好。最具代表性的是AdaBoost算法。对于分类问题,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确地分类规则(强分类器)容易的多。提升方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱
统计学习方法——第7章 支持向量机(个人笔记) 统计学习方法——第7章 支持向量机(个人笔记)参考《统计学习方法》(第二版)李航支持向量机(support vector machines,SVM)是一种二分类模型,是定义在特征空间上的间隔最大的线性分类器。间隔最大使他有别于感知机。7.1 线性可分支持向量机与硬间隔最大化7.1.1 线性可分支持向量机一般来说,当训练数据集线性可分时,存在无穷个分离超平面可将两类数据正确分开。感知机利用误分类最小的策略,求得分离超平面,不过解有无穷多个。线性可分支持向量机利用间隔最大化求最优分离
统计学习方法——第6章 逻辑斯谛回归与最大熵模型(个人笔记) 统计学习方法——第6章 逻辑斯谛回归与最大熵模型(个人笔记)参考《统计学习方法》(第二版)李航逻辑斯谛回归模型与最大熵模型都属于对数线性模型。6.1 逻辑斯谛回归模型6.1.1 逻辑斯谛分布定义6.1 (逻辑斯谛分布)设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数:其中,为位置参数,为形状参数。6.1.2 二项逻辑斯谛回归模型定义6.2 (逻辑斯谛回归模型)二项逻辑斯谛回归模型条件概率分布如下:其中,Y是输出,w为权重.
统计学习方法——第5章 决策树(个人笔记) 统计学习方法——第5章 决策树(个人笔记)参考《统计学习方法》(第二版)李航决策树的学习包括三个步骤:特征选择、决策树的生成、决策树的修剪。5.1 决策树模型与学习5.1.1 决策树模型决策树由结点和有向边组成。结点有两种类型:①内部结点:内部结点表示一个特征或属性。②叶节点:叶结点表示一个类。用决策树分类:从根结点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子结点;这时,每一个子结点对应着该特征值的一个取值。如此递归下去,直至达到叶结点,最后,将
统计学习方法——第4章 朴素贝叶斯法(个人笔记) 统计学习方法——第4章 朴素贝叶斯法(个人笔记)参考《统计学习方法》(第二版)李航朴素贝叶斯法:基于贝叶斯定理与特征条件独立假设的分类方法。4.1 朴素贝叶斯法的学习与分类4.1.1 基本方法训练数据集先学习先验概率分布及条件概率分布先验概率分布条件概率分布这样学习到联合概率分布朴素贝叶斯法的条件概率分布假设条件相互独立的即条件独立性朴素贝叶斯法分类时,对给定的输入x,通过学习到的模型计算后验概率分布,将后验概率最大的类作为x的类输出。后验
统计学习方法——第3章 k近邻法(个人笔记) 统计学习方法——第3章 k近邻法(个人笔记)参考《统计学习方法》(第二版)李航3.1 k近邻算法定义:给定一个训练数据集,对新输入的实例,在训练数据集中找到与该实例最邻近的k个实例,在这k个实例,多数属于某个类别,就把该输入实例划分为这个类别。算法3.1:输入:训练数据集输出:实例所属的类(1)根据给定的距离度量,在训练集T中找出与最邻近的k个点,涵盖这k个点的的邻域记作;(2)在中根据分类决策规则决定的类别:其中,I为指示函数,即当是,I=1,否则,I=0。
统计学习方法——第2章感知机(个人笔记) 统计学习方法——第2章感知机(个人笔记)参考《统计学习方法》(第二版)李航感知机就是二分类的线性分类模型,输入为特征向量,输出只为+1、-1。2.1 感知机模型模型为:其中,为权重or权值,为偏置,为特征向量。为符号函数:假设感知机在二维平面,感知机可为线性方程:例图如下,感知机为超平面,为超平面的法向量,为超平面的截距。2.2 感知机学习策略2.2.1 数据集的线性可分性给定一个数据集:如果存在感知机模型(即为超平面S)使得数据.
统计学习方法——第1章(个人笔记) 统计学习方法——第1章 统计学习及监督学习概论《统计学习方法》(第二版)李航,学习笔记1.1 统计学习1.特点(1)以计算机及网络为平台,是建立在计算机及网络上的;(2)以数据为研究对象,是数据驱动的学科;(3)目的是对数据进行预测与分析(4)以方法为中心,构建模型并应用模型进行预测与分析;(5)是概率论、统计学、信息论、计算理论、最优化理论及计算机科学等多个领域的交叉学科,并且在发展中逐步形成独自的理论体系与方法论。2.对象就是数据3.目的对数据的预测和分