统计学习方法第五章

决策树

  1. 决策树损失函数通常是正则化的极大似然函数

信息增益的算法

输入:训练数据集 D D D 和特征 A A A;
输出: 特征 A A A 对训练数据集 D D D 的信息增益 g ( D , A ) g(D, A) g(D,A)
设有 K K K 个类 C k C_{k} Ck, ∣ C k ∣ \left|C_{k}\right| Ck 为属于类 C k C_{k} Ck 的样本个数
根据特征 A A A 的取值将 D D D 划分为 n n n 个子集 D 1 , D 2 , ⋯ D_{1}, D_{2}, \cdots D1,D2,
D i k = D i ∩ C k D_{i k}=D_{i} \cap C_{k} Dik=DiCk

(1) 计算数据集 D D D 的经验熵 H ( D ) H(D) H(D)

​ 即将数据集 D D D 划分为 K K K个类之后的不确定性
H ( D ) = − ∑ k = 1 K ∣ C k ∣ ∣ D ∣ log ⁡ 2 ∣ C k ∣ ∣ D ∣ H(D)=-\sum_{k=1}^{K} \frac{\left|C_{k}\right|}{|D|} \log _{2} \frac{\left|C_{k}\right|}{|D|} H(D)=k=1KDCklog2DCk
(2) 计算特征 A A A 对数据集 D D D 的经验条件熵 H ( D ∣ A ) H(D \mid A) H(DA)

​ 即 A A A 将数据集 D D D 划分为 n n n个子集之后的不确定性
H ( D ∣ A ) = ∑ i = 1 n ∣ D i ∣ ∣ D ∣ H ( D i ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ ∑ k = 1 K ∣ D i k ∣ ∣ D i ∣ log ⁡ 2 ∣ D i k ∣ ∣ D i ∣ H(D \mid A)=\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} H\left(D_{i}\right)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \sum_{k=1}^{K} \frac{\left|D_{i k}\right|}{\left|D_{i}\right|} \log _{2} \frac{\left|D_{i k}\right|}{\left|D_{i}\right|} H(DA)=i=1nDDiH(Di)=i=1nDDik=1KDiDiklog2DiDik
(3)计算信息增益(不确定性减少的程度)
g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D \mid A) g(D,A)=H(D)H(DA)
不同的$ A$有不同的信息增益,挑个最大的,信息增益大的代表分类能力强

信息增益比

定义 5.3 5.3 5.3 (信息增益比) 特征 A A A 对训练数据集 D D D 的信息增益比 g R ( D , A ) g_{R}(D, A) gR(D,A) 定义 为其信息增益 g ( D , A ) g(D, A) g(D,A) 与训练数据集 D D D 关于特征 A A A 的值的嫡 H A ( D ) H_{A}(D) HA(D) 之比, 即
信 息 增 益 比 = g R ( D , A ) = g ( D , A ) H A ( D ) = H ( D ) − H ( D ∣ A ) H A ( D ) = H ( D ) − H ( D ∣ A ) − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ = 原 始 分 类 不 确 定 性 − 分 类 经 过 A 划 分 之 后 的 不 确 定 性 A 划 分 之 后 的 不 确 定 性 信息增益比=g_{R}(D, A)=\frac{g(D, A)}{H_{A}(D)}=\frac{H(D)-H(D \mid A)}{H_{A}(D)}=\frac{H(D)-H(D \mid A)}{-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \log _{2} \frac{\left|D_{i}\right|}{|D|}}\\ =\frac{原始分类不确定性-分类经过A划分之后的不确定性}{A划分之后的不确定性} =gR(D,A)=HA(D)g(D,A)=HA(D)H(D)H(DA)=i=1nDDilog2DDiH(D)H(DA)=AA
其中, H A ( D ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ , n H_{A}(D)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \log _{2} \frac{\left|D_{i}\right|}{|D|}, n HA(D)=i=1nDDilog2DDi,n 是特征 A A A 取值的个数。

信息增益比本质是在信息增益的基础之上乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。

惩罚参数:数据集D以特征A作为随机变量的熵的倒数,即:将特征A取值相同的样本划分到同一个子集中(之前所说数据集的熵是依据类别进行划分的)

惩罚参数 = 1 H A ( D ) = 1 − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ lng ⁡ 2 ∣ D i ∣ ∣ D ∣ =\frac{1}{H_{A}(D)}=\frac{1}{-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \operatorname{lng}_{2} \frac{\left|D_{i}\right|}{|D|}} =HA(D)1=i=1nDDilng2DDi1

缺点:信息增益比偏向取值较少的特征

原因: 当特征取值较少时 H A ( D ) HA(D) HA(D)的值较小,因此其倒数较大,因而信息增益比较大。因而偏向取值较少的特征。
使用信息增益比:基于以上缺点,并不是直接选择信息增益率最大的特征,而是现在候选特征中找出信息增益高于平均水平的特征,然后在这些特征中再选择信息增益率最高的特征。

ID3算法

在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树。

具体方法是:从根结点开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一棵决策树。ID3相当于用极大似然法进行概率模型的选择。

C4.5 的生成算法

将ID3算法中的信息增益换为信息增益比

剪枝

决策树的剪枝往往通过极小化决策树整体的损失函数(loss function)或代价函数 (cost function) 来实现。设树 T T T 的叶结点个数为 ∣ T ∣ , t |T|, t T,t 是树 T T T叶结点, 该叶结点有 N t N_{t} Nt 个样本点, 其中 k k k 类的样本点有 N t k N_{t k} Ntk 个, k = 1 , 2 , ⋯   , K , H t ( T ) k=1,2, \cdots, K, H_{t}(T) k=1,2,,K,Ht(T) 为叶结点 t t t 上的经验嫡, α ⩾ 0 \alpha \geqslant 0 α0 为参数, 则决策树学习的损失函数可以定义为
C α ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) + α ∣ T ∣ C_{\alpha}(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)+\alpha|T| Cα(T)=t=1TNtHt(T)+αT
其中经验熵为
H t ( T ) = − ∑ k N t k N t log ⁡ N t k N t H_{t}(T)=-\sum_{k} \frac{N_{t k}}{N_{t}} \log \frac{N_{t k}}{N_{t}} Ht(T)=kNtNtklogNtNtk
在损失函数中, 将式 C α ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) + α ∣ T ∣ C_{\alpha}(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)+\alpha|T| Cα(T)=t=1TNtHt(T)+αT右端的第 1 项记作
C ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) = − ∑ t = 1 ∣ T ∣ ∑ k = 1 K N t k log ⁡ N t k N t C(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)=-\sum_{t=1}^{|T|} \sum_{k=1}^{K} N_{t k} \log \frac{N_{t k}}{N_{t}} C(T)=t=1TNtHt(T)=t=1Tk=1KNtklogNtNtk
这时有
C α ( T ) = C ( T ) + α ∣ T ∣ C_{\alpha}(T)=C(T)+\alpha|T| Cα(T)=C(T)+αT
C ( T ) C(T) C(T) 表示模型与训练数据的拟合程度,
∣ T ∣ |T| T 表示模型复杂度, 参数 α ⩾ 0 \alpha \geqslant 0 α0 控制两者之间的影响。

CART算法

分类与回归树(classification and regression tree, CART)模型, 是应用广泛的决策树学习方法。CART 同样由特征选择、树的生成及剪枝组成, 既可以用于分类也可以用于回归。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值