flink实战--flinksql使用Streaming Sink将数据流写入文件系统

本文详细介绍了Flink的Streaming Sink如何将流数据写入文件系统,特别是通过StreamingFileSink实现批流一体的统一数据处理。讨论了如何利用分区提交策略保证数据一致性,并给出了具体配置参数和案例分析。
摘要由CSDN通过智能技术生成

扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦

Streaming Sink简介

                  Streaming Sink支持流的写操作,基于Flink的流文件接收器将数据写入文件。行编码格式是csv和json,批量编码的格式有parquet, orc和avro。极大的方便了我直接编写SQL,将流数据插入到非分区表中。如果是分区表,则可以配置分区相关的操作,本篇文章将详细介绍Streaming Sink相关的概念和使用方式以及如何实现流批数据的统一

Streaming Sink解决的问题

           在介绍flink如何实现统一数据之前,我们先看一下,flink如何实现流批的元数据和计算引擎的统一,具体如下:

统一元数据

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿华田512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值