简介
Schema的定义,Druid摄入数据规范的核心是dataSchema,dataSchema定义了如何解析输入的数据,并将数据存储到Druid中。 ingestion spec 由三个部分组成:
{
"dataSchema" : {...},
"ioConfig" : {...},
"tuningConfig" : {...}
}
| 字段 | 类型 | 描述 | 是否必须 |
|---|---|---|---|
| dataSchema | JSON Object | 指定传入数据的Schema。所有Ingestion Spec都可以共享相同的dataSchema。 | 是 |
| ioConfig | JSON Object | 指定数据的来源和去向。此对象将随摄取方法而变化。 | 是 |
| tuningConfig | JSON Object | 指定如何调整各种摄取参数。此对象将随摄取方法而变化。 | 否 |
1.dataSchema
首先我们创建一个json的文件:kafka-index-day-roll-up.json,在该文件中添加空dataSchema;
"dataSchema" : {}
2.DataSource name
DataSource name指定,数据源名称由dataSchema中的datasource参数指定,在这里我们叫做kafka_to_druid,可以看作是数据库的表名;
"dataSchema" : {
"dataSource" : "kafka_to_druid",
}
3.parser-解释器
dataSchema中有一个parser这个字段,它是解释输入数据的解析器,上面的案例中我们使用的是JSON格式的字符串,因此我们使用JSON格式的字符串解释器解析数据。
如果
type未包含,则解析器默认为string如果
format未包含,则parseSpec默认为tsv。
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json"
}
}
}
4.Time column - 时间列
解释器parser需要知道数据中每条数据的产生时间(main timestamp),这个时间戳需要定义在 timestampSpec中。数据中有一列ts就是我们所需要的timestamp,因此我们将带有该信息的timestampSpec 添加到parseSpec中。
| 字段 | 类型 | 描述 | 是否必须 |
|---|---|---|---|
| column | String | 时间戳的列。 | 是 |
| format | String | iso,posix,millis,micro,nano,auto或任何Joda time格式。 | 否(默认== ‘auto’) |
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
}
}
}
}
5.Column types
上面我们已经定义了time的列,接下来我们定义其它列的类型。Druid支持的column types: String, Long, Float, Double.我们将在接下来的小节中讨论以及如何使用它们。在我们去定义非时间序列之前,我们首先来讨论一下rollup。
6.Rollup
druid在通过roll-up处理后,会将原始数据在注入的时候就开始进行汇总处理。roll-up是在数据存储到segment之前进行的第一层聚合操作。
- 如果rollup设置成true,这个时候就需要我们把输入的columns进行分为两类,维度(dimensions)和度量(metrics).dimensions是我们进行group的时候需要的列,metrics是我们进行聚合时需要的列。
- 如果rollup设置成false,这个时候我们会将输入的所有columns当做dimensions处理,并且没有预聚合的发生。
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
}
}
},
"granularitySpec" : {
"rollup" : true
}
}
7.选择dimension和metrics
①在上面给到的数据集中,很明显的就可以区分开 dimensions 和 metrics。
Dimensions: startIP | startPort | endIP | endPort | protocol
Metrics: packets | bytes | costTime
②接下来我们如何在摄入数据规范中定义这些 dimensions列 和 metrics列呢?Dimensions:使用dimensionsSpec在parseSpec中指定。
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"startIP",
{ "name" : "startPort", "type" : "long" },
{ "name" : "endIP", "type" : "string" },
{ "name" : "endPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
}
}
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "costTime", "fieldName" : "costTime" }
],
"granularitySpec" : {
"rollup" : true
}
}
注:每个维度都有一个name 和 type,type的类型可能是:"long", "float", "double", "string"。我们注意到startIP这个"string"类型的维度,它仅仅只需要指定名字就可以了。
③.在druid中,string 类型是默认的。除此之外,我们注意一下protocol是一个数值型的。但是我们定义的时候将其定义为 string。Druid会强制将该类型进行转换。Metrics:使用metricsSpec 在dataSchema中指定。
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"startIP",
{ "name" : "startPort", "type" : "long" },
{ "name" : "endIP", "type" : "string" },
{ "name" : "endPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
}
}
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "costTime", "fieldName" : "costTime" }
],
"granularitySpec" : {
"rollup" : true
}
}
注:当我们定义metric时,有必要指定在rollup期间对该列执行的聚合类型。我们将packets和bytes定义成long sum聚合操作,costTime定义成double sum聚合操作。 metricsSpec的嵌套级别与dimensionSpec或parseSpec不同,它和dataSchema属于同一嵌套级别。除此,我们还定义了一个count聚合操作器,它会在rollup过程中,记录输入的数据量总共有多少。支持的聚合器类型详情点击link
8.不使用rollup
如果不适用roolup所有输入的colums都被当做"dimensions",不再区分"dimensions" 和"metrics"。
"dimensionsSpec" : {
"dimensions": [
"startIP",
{ "name" : "startPort", "type" : "long" },
{ "name" : "endIP", "type" : "string" },
{ "name" : "endPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" },
{ "name" : "packets", "type" : "long" },
{ "name" : "bytes", "type" : "long" },
{ "name" : "startPort", "type" : "double" }
]
}
9.Define Granularities-粒度的定义。
接下来还有一些其他的属性需要在granularitySpec中设置,granularitySpec支持2中类型(type):uniform和arbitrary。在这里,我们使用uniform这种类型,这会使所有的segment都有统一的间隔大小(比如:每个segment都保存一个小时内的值)。
①segment granularity这个属性是指一个segment应该包含多大时间间隔的数据,可以是: DAY, WEEK,HOUR , MINUTE...... 在这里,我们制定segment的粒度是HOUR。
"dataSchema" : {
"dataSource" : "kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"startIP",
{ "name" : "startPort", "type" : "long" },
{ "name" : "endIP", "type" : "string" },
{ "name" : "endPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
}
}
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "costTime", "fieldName" : "costTime" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"rollup" : true
}
}
②.query granularity:查询的粒度通过queryGranularity配置在granularitySpec中,在这里我们使用minute粒度。
"dataSchema" : {
"dataSource" : "realtime_kafka_to_druid",
"parser" : {
"type" : "string",
"parseSpec" : {
"format" : "json",
"timestampSpec" : {
"format" : "auto",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"startIP",
{ "name" : "startPort", "type" : "long" },
{ "name" : "endIP", "type" : "string" },
{ "name" : "endPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
}
}
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "costTime", "fieldName" : "costTime" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE"
"rollup" : true
}
}
③.Define an interval:定义时间间隔,在这个时间间隔之外的数据将不会被处理。注意,这个参数设置只在批处理中(batch)。interval需要在 granularitySpec中指定。
"granularitySpec" : {
"intervals" : ["2019-01-17/2019-01-18"]
}
10.定义输入数据的数据源
IOConfig规范根据摄取任务类型而有所不同。
- 本机批量摄取:请参阅Native Batch IOConfig
- Hadoop Batch ingestion:请参阅Hadoop Batch IOConfig
- Kafka Indexing Service:请参阅Kafka Supervisor IOConfig
- Stream Push Ingestion:使用Tranquility进行Stream Push不需要IO配置
- Stream Pull Ingestion(已弃用):请参阅Stream pull ingestion
11.tuningConfig-额外的配置
每个摄入任务都有一个tuningConfig部分,让开发人员自行配置。在这里根据输入的数据源kafka来进行配置tuningConfig。type索引任务类型,此处是kafka 。reportParseExceptions默认是false,如果开启这个功能,当摄入数据过程中出现数据异常将会导致摄入数据停止。
"tuningConfig": {
"type": "kafka",
"reportParseExceptions": false
}
提交我们的task,然后查询数据。
-
1.需要在Overlord节点执行:
curl -X 'POST' -H 'Content-Type:application/json' -d @quickstart/kafka-druid/kafka-index-day-roll-up.json http://host1:8090/druid/indexer/v1/supervisor2.此刻开启程序,往kafka的topic=druid-topic-book中发送数据,此代码不做重点。
3.上面的步骤执行完之后,我们可以查看druid最终存入的数据。需要在broker节点执行。
①.rollup-select-sql.json内容,注意查询的DataSource名称
{ "query":"select * from \"realtime_kafka_to_druid\"" }② 执行
curl -X 'POST' -H 'Content-Type:application/json' -d @rollup-select-sql.json http://host2:8082/druid/v2/sql扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦
扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦
扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦


932

被折叠的 条评论
为什么被折叠?



