000 高数预备知识

一、三角函数

1. 直角三角形中的定义

在直角三角形中仅有锐角(大小在0到90度之间的角)三角函数的定义:

θ \theta θ正弦是对边与斜边的比值: sin ⁡ θ = a h {\displaystyle \sin {\theta }={\frac {a}{h}}} sinθ=ha

θ {\displaystyle \theta } θ余弦是邻边与斜边的比值: cos ⁡ θ = b h {\displaystyle \cos {\theta }={\frac {b}{h}}} cosθ=hb

θ {\displaystyle \theta } θ正切是对边与邻边的比值: tan ⁡ θ = a b {\displaystyle \tan {\theta }={\frac {a}{b}}} tanθ=ba

θ {\displaystyle \theta } θ余切是邻边与对边的比值: cot ⁡ θ = b a {\displaystyle \cot {\theta }={\frac {b}{a}}} cotθ=ab

θ {\displaystyle \theta } θ正割是斜边与邻边的比值: sec ⁡ θ = h b {\displaystyle \sec {\theta }={\frac {h}{b}}} secθ=bh

θ {\displaystyle \theta } θ余割是斜边与对边的比值: csc ⁡ θ = h a {\displaystyle \csc {\theta }={\frac {h}{a}}} cscθ=ah

2、直角坐标系中的定义

正弦余弦正切余切正割余割
sin ⁡ θ = y r {\displaystyle \sin \theta ={\frac {y}{r}}} sinθ=ry cos ⁡ θ = x r {\displaystyle \cos \theta ={\frac {x}{r}}} cosθ=rx tan ⁡ θ = y x {\displaystyle \tan \theta ={\frac {y}{x}}} tanθ=xy cot ⁡ θ = x y {\displaystyle \cot \theta ={\frac {x}{y}}} cotθ=yx sec ⁡ θ = r x {\displaystyle \sec \theta ={\frac {r}{x}}} secθ=xr csc ⁡ θ = r y {\displaystyle \csc \theta ={\frac {r}{y}}} cscθ=yr

3、性质

正弦定理:

a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R , {\displaystyle {\frac {a}{\sin A}}={\frac {b}{\sin B}}={\frac {c}{\sin C}}=2R,} sinAa=sinBb=sinCc=2R 其中,R是三角形外接圆的半径长度:

R = a b c ( a + b + c ) ( a − b + c ) ( a + b − c ) ( b + c − a ) . {\displaystyle R={\frac {abc}{\sqrt {(a+b+c)(a-b+c)(a+b-c)(b+c-a)}}}.} R=(a+b+c)(ab+c)(a+bc)(b+ca) abc.

另一个有关于正弦的法则可以用来计算三角形的面积。在给定两条边的长度以及它们所夹角的角度,该三角形的面积为: A r e a = 1 2 a b sin ⁡ C . {\displaystyle {Area}={\frac {1}{2}}ab\sin C.} Area=21absinC.

余弦定理:

c 2 = a 2 + b 2 − 2 a b cos ⁡ γ {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos \gamma } c2=a2+b22abcosγ

同样,也可以将其改为:

b 2 = c 2 + a 2 − 2 c a cos ⁡ β a 2 = b 2 + c 2 − 2 b c cos ⁡ α {\displaystyle b^{2}=c^{2}+a^{2}-2ca\cos \beta }\\{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos \alpha } b2=c2+a22cacosβa2=b2+c22bccosα

其中 c {\displaystyle c} c γ {\displaystyle \gamma } γ 角的对边,而 a {\displaystyle a} a b {\displaystyle b} b γ {\displaystyle \gamma } γ 角的邻边。勾股定理则是余弦定理的特殊情况,当 γ {\displaystyle \gamma } γ 9 0 ∘ {\displaystyle 90^{\circ }} 90 时, cos ⁡ γ = 0 {\displaystyle \cos \gamma =0} cosγ=0,等式可被简化为 c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}} c2=a2+b2

正切定理:

任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商:

a − b a + b = t a n   α − β 2 t a n   α + β 2 {\displaystyle {\frac {a-b}{a+b}}={\frac {\mathrm {tan} \,{\frac {\alpha -\beta }{2}}}{\mathrm {tan} \,{\frac {\alpha +\beta }{2}}}}} a+bab=tan2α+βtan2αβ

b − c b + c = t a n   β − γ 2 t a n   β + γ 2 {\displaystyle {\frac {b-c}{b+c}}={\frac {\mathrm {tan} \,{\frac {\beta -\gamma }{2}}}{\mathrm {tan} \,{\frac {\beta +\gamma }{2}}}}} b+cbc=tan2β+γtan2βγ

c − a c + a = t a n   γ − α 2 t a n   γ + α 2 {\displaystyle {\frac {c-a}{c+a}}={\frac {\mathrm {tan} \,{\frac {\gamma -\alpha }{2}}}{\mathrm {tan} \,{\frac {\gamma +\alpha }{2}}}}} c+aca=tan2γ+αtan2γα

毕达哥拉斯恒等式:

sin ⁡ 2  ⁣ x + cos ⁡ 2  ⁣ x = 1 {\displaystyle \sin ^{2}\!x+\cos ^{2}\!x=1} sin2x+cos2x=1 tan ⁡ 2  ⁣ x + 1 = sec ⁡ 2  ⁣ x {\displaystyle \tan ^{2}\!x+1=\sec ^{2}\!x} tan2x+1=sec2x 1 + cot ⁡ 2  ⁣ x = csc ⁡ 2  ⁣ x . {\displaystyle 1+\cot ^{2}\!x=\csc ^{2}\!x.} 1+cot2x=csc2x.

和差公式:

正弦 sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β   {\displaystyle \sin(\alpha \pm \beta )=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \,} sin(α±β)=sinαcosβ±cosαsinβ
余弦 cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β   {\displaystyle \cos(\alpha \pm \beta )=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \,} cos(α±β)=cosαcosβsinαsinβ
正切 tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β {\displaystyle \tan(\alpha \pm \beta )={\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}} tan(α±β)=1tanαtanβtanα±tanβ
余切 cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α {\displaystyle \cot(\alpha \pm \beta )={\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}} cot(α±β)=cotβ±cotαcotαcotβ1
正割 sec ⁡ ( α ± β ) = sec ⁡ α sec ⁡ β 1 ∓ tan ⁡ α tan ⁡ β {\displaystyle \sec(\alpha \pm \beta )={\frac {\sec \alpha \sec \beta }{1\mp \tan \alpha \tan \beta }}} sec(α±β)=1tanαtanβsecαsecβ
余割 csc ⁡ ( α ± β ) = csc ⁡ α csc ⁡ β cot ⁡ β ± cot ⁡ α {\displaystyle \csc(\alpha \pm \beta )={\frac {\csc \alpha \csc \beta }{\cot \beta \pm \cot \alpha }}} csc(α±β)=cotβ±cotαcscαcscβ

倍角公式:

二倍角公式正 sin ⁡ 2 θ = 2 sin ⁡ θ cos ⁡ θ   = 2 tan ⁡ θ 1 + tan ⁡ 2 θ {\displaystyle {\begin{aligned}\sin 2\theta &=2\sin \theta \cos \theta \ \\&={\frac {2\tan \theta }{1+\tan ^{2}\theta }}\end{aligned}}} sin2θ=2sinθcosθ =1+tan2θ2tanθ tan ⁡ 2 θ = 2 tan ⁡ θ 1 − tan ⁡ 2 θ   = 1 1 − tan ⁡ θ − 1 1 + tan ⁡ θ {\displaystyle {\begin{aligned}\tan 2\theta &={\frac {2\tan \theta }{1-\tan ^{2}\theta }}\ \\&={\frac {1}{1-\tan \theta }}-{\frac {1}{1+\tan \theta }}\end{aligned}}} tan2θ=1tan2θ2tanθ =1tanθ11+tanθ1 sec ⁡ 2 θ = sec ⁡ 2 θ 1 − tan ⁡ 2 θ = sec ⁡ 2 θ 2 − sec ⁡ 2 θ {\displaystyle {\begin{aligned}\sec 2\theta &={\frac {\sec ^{2}\theta }{1-\tan ^{2}\theta }}\\&={\frac {\sec ^{2}\theta }{2-\sec ^{2}\theta }}\end{aligned}}} sec2θ=1tan2θsec2θ=2sec2θsec2θ
二倍角公式余 cos ⁡ 2 θ = cos ⁡ 2 θ − sin ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 = 1 − 2 sin ⁡ 2 θ = 1 − tan ⁡ 2 θ 1 + tan ⁡ 2 θ {\displaystyle {\begin{aligned}\cos 2\theta &=\cos ^{2}\theta -\sin ^{2}\theta \\&=2\cos ^{2}\theta -1\\&=1-2\sin ^{2}\theta \\&={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}\end{aligned}}} cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ=1+tan2θ1tan2θ cot ⁡ 2 θ = cot ⁡ 2 θ − 1 2 cot ⁡ θ = cot ⁡ θ − tan ⁡ θ 2 {\displaystyle {\begin{aligned}\cot 2\theta &={\frac {\cot ^{2}\theta -1}{2\cot \theta }}\\&={\frac {\cot \theta -\tan \theta }{2}}\end{aligned}}} cot2θ=2cotθcot2θ1=2cotθtanθ csc ⁡ 2 θ = csc ⁡ 2 θ 2 cot ⁡ θ = sec ⁡ θ csc ⁡ θ 2 {\displaystyle {\begin{aligned}\csc 2\theta &={\frac {\csc ^{2}\theta }{2\cot \theta }}\\&={\frac {\sec \theta \csc \theta }{2}}\end{aligned}}} csc2θ=2cotθcsc2θ=2secθcscθ
三倍角公式正 sin ⁡ 3 θ = 3 sin ⁡ θ − 4 sin ⁡ 3 θ   {\displaystyle \sin 3\theta =3\sin \theta -4\sin ^{3}\theta \,} sin3θ=3sinθ4sin3θ tan ⁡ 3 θ = 3 tan ⁡ θ − tan ⁡ 3 θ 1 − 3 tan ⁡ 2 θ {\displaystyle \tan 3\theta ={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}} tan3θ=13tan2θ3tanθtan3θ sec ⁡ 3 θ = sec ⁡ 3 θ 4 − 3 sec ⁡ 2 θ {\displaystyle \sec 3\theta ={\frac {\sec ^{3}\theta }{4-3\sec ^{2}\theta }}} sec3θ=43sec2θsec3θ
三倍角公式余 cos ⁡ 3 θ = 4 cos ⁡ 3 θ − 3 cos ⁡ θ   {\displaystyle \cos 3\theta =4\cos ^{3}\theta -3\cos \theta \,} cos3θ=4cos3θ3cosθ cot ⁡ 3 θ = cot ⁡ 3 θ − 3 cot ⁡ θ 3 cot ⁡ 2 θ − 1 {\displaystyle \cot 3\theta ={\frac {\cot ^{3}\theta -3\cot \theta }{3\cot ^{2}\theta -1}}} cot3θ=3cot2θ1cot3θ3cotθ csc ⁡ 3 θ = csc ⁡ 3 θ 3 csc ⁡ 2 θ − 4 {\displaystyle \csc 3\theta ={\frac {\csc ^{3}\theta }{3\csc ^{2}\theta -4}}} csc3θ=3csc2θ4csc3θ
半角公式正 sin ⁡ θ 2 = ±   1 − cos ⁡ θ 2 {\displaystyle \sin {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1-\cos \theta }{2}}}} sin2θ=±21cosθ tan ⁡ θ 2 = csc ⁡ θ − cot ⁡ θ = ±   1 − cos ⁡ θ 1 + cos ⁡ θ = sin ⁡ θ 1 + cos ⁡ θ = 1 − cos ⁡ θ sin ⁡ θ = cos ⁡ θ + sin ⁡ θ − 1 cos ⁡ θ − sin ⁡ θ + 1 {\displaystyle {\begin{aligned}\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta \\&=\pm \,{\sqrt {1-\cos \theta \over 1+\cos \theta }}\\&={\frac {\sin \theta }{1+\cos \theta }}\\&={\frac {1-\cos \theta }{\sin \theta }}\\&={\frac {\cos \theta +\sin \theta -1}{\cos \theta -\sin \theta +1}}\end{aligned}}} tan2θ=cscθcotθ=±1+cosθ1cosθ =1+cosθsinθ=sinθ1cosθ=cosθsinθ+1cosθ+sinθ1 sec ⁡ θ 2 = ±   2 sec ⁡ θ sec ⁡ θ + 1 {\displaystyle \sec {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {2\sec \theta }{\sec \theta +1}}}} sec2θ=±secθ+12secθ
半角公式余 cos ⁡ θ 2 = ±   1 + cos ⁡ θ 2 {\displaystyle \cos {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1+\cos \theta }{2}}}} cos2θ=±21+cosθ cot ⁡ θ 2 = csc ⁡ θ + cot ⁡ θ = ±   1 + cos ⁡ θ 1 − cos ⁡ θ = sin ⁡ θ 1 − cos ⁡ θ = 1 + cos ⁡ θ sin ⁡ θ = cos ⁡ θ − sin ⁡ θ + 1 cos ⁡ θ + sin ⁡ θ − 1 {\displaystyle {\begin{aligned}\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta \\&=\pm \,{\sqrt {1+\cos \theta \over 1-\cos \theta }}\\&={\frac {\sin \theta }{1-\cos \theta }}\\&={\frac {1+\cos \theta }{\sin \theta }}\\&={\frac {\cos \theta -\sin \theta +1}{\cos \theta +\sin \theta -1}}\end{aligned}}} cot2θ=cscθ+cotθ=±1cosθ1+cosθ =1cosθsinθ=sinθ1+cosθ=cosθ+sinθ1cosθsinθ+1 csc ⁡ θ 2 = ±   2 sec ⁡ θ sec ⁡ θ − 1 {\displaystyle \csc {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {2\sec \theta }{\sec \theta -1}}}} csc2θ=±secθ12secθ

积化和差与和差化积恒等式:

积化和差和差化积
sin ⁡ α cos ⁡ β = sin ⁡ ( α + β ) + sin ⁡ ( α − β ) 2 {\displaystyle \sin \alpha \cos \beta ={\sin(\alpha +\beta )+\sin(\alpha -\beta ) \over 2}} sinαcosβ=2sin(α+β)+sin(αβ) sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 {\displaystyle \sin \alpha +\sin \beta =2\sin {\frac {\alpha +\beta }{2}}\cos {\frac {\alpha -\beta }{2}}} sinα+sinβ=2sin2α+βcos2αβ
cos ⁡ α sin ⁡ β = sin ⁡ ( α + β ) − sin ⁡ ( α − β ) 2 {\displaystyle \cos \alpha \sin \beta ={\sin(\alpha +\beta )-\sin(\alpha -\beta ) \over 2}} cosαsinβ=2sin(α+β)sin(αβ) sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 {\displaystyle \sin \alpha -\sin \beta =2\cos {\alpha +\beta \over 2}\sin {\alpha -\beta \over 2}} sinαsinβ=2cos2α+βsin2αβ
cos ⁡ α cos ⁡ β = cos ⁡ ( α + β ) + cos ⁡ ( α − β ) 2 {\displaystyle \cos \alpha \cos \beta ={\cos(\alpha +\beta )+\cos(\alpha -\beta ) \over 2}} cosαcosβ=2cos(α+β)+cos(αβ) cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 {\displaystyle \cos \alpha +\cos \beta =2\cos {\frac {\alpha +\beta }{2}}\cos {\frac {\alpha -\beta }{2}}} cosα+cosβ=2cos2α+βcos2αβ
sin ⁡ α sin ⁡ β = − cos ⁡ ( α + β ) − cos ⁡ ( α − β ) 2 {\displaystyle \sin \alpha \sin \beta =-{\cos(\alpha +\beta )-\cos(\alpha -\beta ) \over 2}} sinαsinβ=2cos(α+β)cos(αβ) cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 {\displaystyle \cos \alpha -\cos \beta =-2\sin {\alpha +\beta \over 2}\sin {\alpha -\beta \over 2}} cosαcosβ=2sin2α+βsin2αβ

平方差公式:

sin ⁡ ( x + y ) sin ⁡ ( x − y ) = sin ⁡ 2 x − sin ⁡ 2 y = cos ⁡ 2 y − cos ⁡ 2 x   {\displaystyle \sin(x+y)\sin(x-y)=\sin ^{2}{x}-\sin ^{2}{y}=\cos ^{2}{y}-\cos ^{2}{x}\,} sin(x+y)sin(xy)=sin2xsin2y=cos2ycos2x

cos ⁡ ( x + y ) cos ⁡ ( x − y ) = cos ⁡ 2 x − sin ⁡ 2 y = cos ⁡ 2 y − sin ⁡ 2 x   {\displaystyle \cos(x+y)\cos(x-y)=\cos ^{2}{x}-\sin ^{2}{y}=\cos ^{2}{y}-\sin ^{2}{x}\,} cos(x+y)cos(xy)=cos2xsin2y=cos2ysin2x

4、三角函数的反函数

  • 在笛卡尔平面上 f ( x ) = arcsin ⁡ x {\displaystyle f(x)=\arcsin x} f(x)=arcsinx(红)和 f ( x ) = arccos ⁡ x {\displaystyle f(x)=\arccos x} f(x)=arccosx(绿)函数的常用主值的图像。

  • 在笛卡尔平面上 f ( x ) = arctan ⁡ x {\displaystyle f(x)=\arctan x} f(x)=arctanx(红)和 f ( x ) = arccot ⁡ x {\displaystyle f(x)=\operatorname {arccot} x} f(x)=arccotx(绿)函数的常用主值的图像。

  • 在笛卡尔平面上 f ( x ) = arcsec ⁡ x {\displaystyle f(x)=\operatorname {arcsec} x} f(x)=arcsecx(红)和 f ( x ) = arccsc ⁡ x {\displaystyle f(x)=\operatorname {arccsc} x} f(x)=arccscx(绿)函数的常用主值的图像。

    名称常用符号定义定义域值域
    反正弦 y = arcsin ⁡ x {\displaystyle y=\arcsin x} y=arcsinx x = sin ⁡ y {\displaystyle x=\sin y} x=siny [ − 1 , 1 ] {\displaystyle [-1,1]} [1,1] [ − π 2 , π 2 ] {\displaystyle [-{\frac {\pi }{2}},{\frac {\pi }{2}}]} [2π,2π]
    反余弦 y = arccos ⁡ x {\displaystyle y=\arccos x} y=arccosx x = cos ⁡ y {\displaystyle x=\cos y} x=cosy [ − 1 , 1 ] {\displaystyle [-1,1]} [1,1] [ 0 , π ] {\displaystyle [0,\pi ]} [0,π]
    反正切 y = arctan ⁡ x {\displaystyle y=\arctan x} y=arctanx x = tan ⁡ y {\displaystyle x=\tan y} x=tany R {\displaystyle \mathbb {R} } R ( − π 2 , π 2 ) {\displaystyle (-{\frac {\pi }{2}},{\frac {\pi }{2}})} (2π,2π)
    反余切 y = arccot ⁡ x {\displaystyle y=\operatorname {arccot} x} y=arccotx x = cot ⁡ y {\displaystyle x=\cot y} x=coty R {\displaystyle \mathbb {R} } R ( 0 , π ) {\displaystyle (0,\pi )} (0,π)
    反正割 y = arcsec ⁡ x {\displaystyle y=\operatorname {arcsec} x} y=arcsecx x = sec ⁡ y {\displaystyle x=\sec y} x=secy ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) {\displaystyle (-\infty ,-1]\cup [1,+\infty )} (,1][1,+) [ 0 , π 2 ) ∪ ( π 2 , π ] {\displaystyle [0,{\frac {\pi }{2}})\cup ({\frac {\pi }{2}},\pi ]} [0,2π)(2π,π]
    反余割 y = arccsc ⁡ x {\displaystyle y=\operatorname {arccsc} x} y=arccscx x = csc ⁡ y {\displaystyle x=\csc y} x=cscy ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) {\displaystyle (-\infty ,-1]\cup [1,+\infty )} (,1][1,+) [ − π 2 , 0 ) ∪ ( 0 , π 2 ] {\displaystyle [-{\frac {\pi }{2}},0)\cup (0,{\frac {\pi }{2}}]} [2π,0)(0,2π]

    反函数的性质:

    余角:

    arccos ⁡ x = π 2 − arcsin ⁡ x {\displaystyle \arccos x={\frac {\pi }{2}}-\arcsin x} arccosx=2πarcsinx

    arccot ⁡ x = π 2 − arctan ⁡ x {\displaystyle \operatorname {arccot} x={\frac {\pi }{2}}-\arctan x} arccotx=2πarctanx

    arccsc ⁡ x = π 2 − arcsec ⁡ x {\displaystyle \operatorname {arccsc} x={\frac {\pi }{2}}-\operatorname {arcsec} x} arccscx=2πarcsecx

    负数参数:

    arcsin ⁡ ( − x ) = − arcsin ⁡ x  ⁣ arccos ⁡ ( − x ) = π − arccos ⁡ x  ⁣ arctan ⁡ ( − x ) = − arctan ⁡ x  ⁣ arccot ⁡ ( − x ) = π − arccot ⁡ x  ⁣ arcsec ⁡ ( − x ) = π − arcsec ⁡ x  ⁣ arccsc ⁡ ( − x ) = − arccsc ⁡ x  ⁣ {\displaystyle \arcsin(-x)=-\arcsin x\!}\\{\displaystyle \arccos(-x)=\pi -\arccos x\!}\\{\displaystyle \arctan(-x)=-\arctan x\!}\\{\displaystyle \operatorname {arccot}(-x)=\pi -\operatorname {arccot} x\!}\\{\displaystyle \operatorname {arcsec}(-x)=\pi -\operatorname {arcsec} x\!}\\{\displaystyle \operatorname {arccsc}(-x)=-\operatorname {arccsc} x\!} arcsin(x)=arcsinxarccos(x)=πarccosxarctan(x)=arctanxarccot(x)=πarccotxarcsec(x)=πarcsecxarccsc(x)=arccscx

    倒数参数:

    arccos ⁡ 1 x   = arcsec ⁡ x {\displaystyle \arccos {\frac {1}{x}}\,=\operatorname {arcsec} x} arccosx1=arcsecx

    arcsin ⁡ 1 x   = arccsc ⁡ x {\displaystyle \arcsin {\frac {1}{x}}\,=\operatorname {arccsc} x} arcsinx1=arccscx

    arctan ⁡ 1 x = π 2 − arctan ⁡ x = arccot ⁡ x ,     x > 0 {\displaystyle \arctan {\frac {1}{x}}={\frac {\pi }{2}}-\arctan x=\operatorname {arccot} x,\ } {\displaystyle \ x>0} arctanx1=2πarctanx=arccotx,  x>0

    arctan ⁡ 1 x = − π 2 − arctan ⁡ x = − π + arccot ⁡ x ,     x < 0 {\displaystyle \arctan {\frac {1}{x}}=-{\frac {\pi }{2}}-\arctan x=-\pi +\operatorname {arccot} x,\ } {\displaystyle \ x<0} arctanx1=2πarctanx=π+arccotx,  x<0

    arccot ⁡ 1 x = π 2 − arccot ⁡ x = arctan ⁡ x ,     x > 0 {\displaystyle \operatorname {arccot} {\frac {1}{x}}={\frac {\pi }{2}}-\operatorname {arccot} x=\arctan x,\ } {\displaystyle \ x>0} arccotx1=2πarccotx=arctanx,  x>0

    arccot ⁡ 1 x = 3 π 2 − arccot ⁡ x = π + arctan ⁡ x ,     x < 0 {\displaystyle \operatorname {arccot} {\frac {1}{x}}={\frac {3\pi }{2}}-\operatorname {arccot} x=\pi +\arctan x,\ } {\displaystyle \ x<0} arccotx1=23πarccotx=π+arctanx,  x<0

    arcsec ⁡ 1 x = arccos ⁡ x {\displaystyle \operatorname {arcsec} {\frac {1}{x}}=\arccos x} arcsecx1=arccosx

    arccsc ⁡ 1 x = arcsin ⁡ x {\displaystyle \operatorname {arccsc} {\frac {1}{x}}=\arcsin x} arccscx1=arcsinx

    二、参数方程

    在平面直角坐标系中,如果曲线上任意一点的坐标 x、y 都是某个变数t的函数: { x = f ( t ) y = g ( t ) {\displaystyle {\begin{cases}x=f(t)\\y=g(t)\end{cases}}} {x=f(t)y=g(t),并且对于 t 的每一个允许的取值,由方程组确定的点 (x, y) 都在这条曲线上,那么这个方程就叫做曲线的参数方程.

    直线

    [点斜式]过 ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} (x0,y0),斜率为 m {\displaystyle m} m 的直线: { x = x 0 + t y = y 0 + m t {\displaystyle {\begin{cases}x=x_{0}+t\\y=y_{0}+mt\end{cases}}} {x=x0+ty=y0+mt

    [点向式]过 ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} (x0,y0), 方向向量为 ( u , v ) {\displaystyle (u,v)} (u,v)的直线: { x = x 0 + u t y = y 0 + v t {\displaystyle {\begin{cases}x=x_{0}+ut\\y=y_{0}+vt\end{cases}}} {x=x0+uty=y0+vt

    圆: { x = r cos ⁡ t y = r sin ⁡ t {\displaystyle {\begin{cases}x=r\cos t\\y=r\sin t\end{cases}}} {x=rcosty=rsint

    椭圆: { x = a cos ⁡ t y = b sin ⁡ t {\displaystyle {\begin{cases}x=a\cos t\\y=b\sin t\end{cases}}} {x=acosty=bsint

    双曲线: { x = a sec ⁡ t y = b tan ⁡ t {\displaystyle {\begin{cases}x=a\sec t\\y=b\tan t\end{cases}}} {x=asecty=btant

    抛物线: { x = 2 c t y = t 2 {\displaystyle {\begin{cases}x=2ct\\y=t^{2}\end{cases}}} {x=2cty=t2

    螺线: { x = t cos ⁡ l t y = t sin ⁡ l t {\displaystyle {\begin{cases}x=t\cos lt\\y=t\sin lt\end{cases}}} {x=tcoslty=tsinlt

    摆线: { x = r ⋅ ( t − sin ⁡ t ) y = r ⋅ ( 1 − cos ⁡ t ) {\displaystyle {\begin{cases}x=r\cdot \left(t-\sin t\right)\\y=r\cdot \left(1-\cos t\right)\end{cases}}} {x=r(tsint)y=r(1cost)

    三、极坐标

    从极坐标 r {\displaystyle r} r θ {\displaystyle \theta } θ 可以变换为直角坐标:

    r = y 2 + x 2 {\displaystyle r={\sqrt {y^{2}+x^{2}}}\quad } r=y2+x2 (参阅勾股定理)

    θ = atan2 ⁡ ( y , x ) {\displaystyle \theta =\operatorname {atan2} (y,x)\quad } θ=atan2(y,x)(atan2 是已将象限纳入考量的反正切函数)

    θ = { arctan ⁡ ( y x ) if  x > 0 arctan ⁡ ( y x ) + π if  x < 0  and  y ≥ 0 arctan ⁡ ( y x ) − π if  x < 0  and  y < 0 π 2 if  x = 0  and  y > 0 − π 2 if  x = 0  and  y < 0 0 if  x = 0  and  y = 0 {\displaystyle \theta ={\begin{cases}\arctan({\frac {y}{x}})&{\text{if }}x>0\\\arctan({\frac {y}{x}})+\pi &{\text{if }}x<0{\text{ and }}y\geq 0\\\arctan({\frac {y}{x}})-\pi &{\text{if }}x<0{\text{ and }}y<0\\{\frac {\pi }{2}}&{\text{if }}x=0{\text{ and }}y>0\\-{\frac {\pi }{2}}&{\text{if }}x=0{\text{ and }}y<0\\0&{\text{if }}x=0{\text{ and }}y=0\end{cases}}} θ=arctan(xy)arctan(xy)+πarctan(xy)π2π2π0if x>0if x<0 and y0if x<0 and y<0if x=0 and y>0if x=0 and y<0if x=0 and y=0

    从直角坐标 x {\displaystyle x} x y {\displaystyle y} y 也可以变换为极坐标:

    x = r cos ⁡ θ y = r sin ⁡ θ {\displaystyle x=r\cos \theta }\\{\displaystyle y=r\sin \theta } x=rcosθy=rsinθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值