目标检测论文解读
不定期分享论文解读
Fly~~
这个作者很懒,什么都没留下…
展开
-
Residual Attention Network for Image Classification解读
Residual Attention Network for Image Classification论文地址:https://arxiv.org/abs/1704.06904程序地址:https://github.com/koichiro11/residual-attention-network(1)目的:将极深卷积神经网络与注意力机制结合,取得了远超之前网络结构的准确度。(2)贡献1)提出了可堆叠网络结构:与ResNet中的Residual Block类似,并在可堆叠的基本模块中引入了注意力机原创 2020-07-16 20:27:52 · 277 阅读 · 0 评论 -
Learning Spatial Fusion for Single-Shot Object Detection论文解读
Learning Spatial Fusion for Single-Shot Object Detection(1)目的:不同特征尺度之间的不一致性是基于特征金字塔的单阶段检测的主要缺陷。(2)改进点:提出了新的金字塔特征融合策略,称为自适应空间特征融合(ASFF),通过学习权重参数的方式将不同层的特征融合到一起。(3)网络结构论文中的做法是自适应学习不同尺度上特征融合时的空间权重,主要包括两部分:调节尺寸和自适应融合。1.Feature Resizing以上三个level,在i层level上原创 2020-07-06 11:42:13 · 383 阅读 · 0 评论 -
Squeeze-and-Excitation Networks论文解读
Squeeze-and-Excitation Networks(1)目的:通过改进网络结构提高神经网络的特征提取能力。(2)改进点:提出了一种新的网络结构单元,称为Squeeze-and-Excitation网络块,(3)SE模块上图是SE模块的示意图。给定一个输入x,其特征通道为c1,通过一系列的卷积变换成一个特征通道数为c2的特征,与传统cnn操作不一样的是,接下来通过三个操作来重标定前面得到的特征。首先是squeeze操作,使用全局平均池化 (global average pooling原创 2020-07-06 11:39:09 · 522 阅读 · 0 评论 -
Libra R-CNN: Towards Balanced Learning for Object Detection论文解读
Libra R-CNN: Towards Balanced Learning for Object Detection论文地址:https://arxiv.org/abs/1904.02701v1#程序地址:https://github.com/open-mmlab/mmdetection(1)目的:在训练过程中,检测性能会受到不平衡的限制,这种不平衡分为样本级、特征级和目标级三个层次,为了减轻不平衡带来的影响,提出了平衡学习目标检测框架Libra R-CNN。(2)改进点:集成了三个层次的组件,原创 2020-06-24 18:40:14 · 422 阅读 · 0 评论 -
yolov4论文解读
YOLO v4它来了,速度效果双提升,研究者对比了 YOLOv4 和当前最优目标检测器,发现 YOLOv4 在取得与 EfficientDet 同等性能的情况下,速度是 EfficientDet 的二倍!此外,与 YOLOv3 相比,新版本的 AP 和 FPS 分别提高了 10% 和 12%。迅速引起了 CV 社区的关注。YOLO v4 论文:https://arxiv.org/abs/2004.10934YOLO v4 开源代码:https://github.com/AlexeyAB/darknet原创 2020-05-10 15:15:12 · 1332 阅读 · 0 评论 -
Feature Selective Anchor-Free Module for Single-Shot Object Detection论文解读
Feature Selective Anchor-Free Module for Single-Shot Object Detection论文地址 : https://arxiv.org/abs/1903.00621一、背景对于目标检测任务,比如上图,我们希望可以检测出不同种类的目标,同时还希望检测出同一种目标的不同实例,如后面的人和骑在马背上的人,但检测目标通常存在“尺度差异性”。在这张图中,骑在马背上的人和马是比较大的目标,车和狗是中等大小的目标,站在后面的人是比较小的目标,所以尺度的变化很影响原创 2020-06-17 17:36:33 · 264 阅读 · 0 评论 -
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors论文解读
Assisted Excitation of Activations:A Learning Technique to Improve Object Detectors论文解读这是cvpr2019上的一篇文章,以yolo为例,没有修改网络结构,也没有增加额外的计算负担。(1)目的:解决yolo定位不准确和样本不均匀的问题。(2)改进点:在训练阶段加入Assisted Excitation(AE)模块,没有修改网络结构,也没有在训练阶段增加额外的计算负担。(3)AE1.Assisted Excita原创 2020-06-17 17:12:46 · 383 阅读 · 0 评论