Squeeze-and-Excitation Networks论文解读

Squeeze-and-Excitation Networks
(1)目的:通过改进网络结构提高神经网络的特征提取能力。
(2)改进点:提出了一种新的网络结构单元,称为Squeeze-and-Excitation网络块,
(3)SE模块
在这里插入图片描述
上图是SE模块的示意图。给定一个输入x,其特征通道为c1,通过一系列的卷积变换成一个特征通道数为c2的特征,与传统cnn操作不一样的是,接下来通过三个操作来重标定前面得到的特征。
首先是squeeze操作,使用全局平均池化 (global average pooling )作为 Squeeze 操作,目的是为了在后面的全连接层处理之前先对全局信息进行一个融合,得到11C,公式如下:
在这里插入图片描述
随后进行excitation操作,包括FC(11C/r),Relu,FC(11C),Sigmoid,使用Sigmoid将特征值限制在[0,1]范围内,公式如下:
在这里插入图片描述
最后Scale后的值与特征U中C个通道分别相乘,作为下一级输入。通过网络对Scale值的学习,增强重要特征,减弱不重要特征,使得提取的特征指向性更强。公式如下:
在这里插入图片描述
(4)SE block经典嵌入结构
在这里插入图片描述在这里插入图片描述
(5)总结
SE模块非常好用,可根据自己的网络结构,应用到合适的地方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值