Squeeze-and-Excitation Networks
(1)目的:通过改进网络结构提高神经网络的特征提取能力。
(2)改进点:提出了一种新的网络结构单元,称为Squeeze-and-Excitation网络块,
(3)SE模块
上图是SE模块的示意图。给定一个输入x,其特征通道为c1,通过一系列的卷积变换成一个特征通道数为c2的特征,与传统cnn操作不一样的是,接下来通过三个操作来重标定前面得到的特征。
首先是squeeze操作,使用全局平均池化 (global average pooling )作为 Squeeze 操作,目的是为了在后面的全连接层处理之前先对全局信息进行一个融合,得到11C,公式如下:
随后进行excitation操作,包括FC(11C/r),Relu,FC(11C),Sigmoid,使用Sigmoid将特征值限制在[0,1]范围内,公式如下:
最后Scale后的值与特征U中C个通道分别相乘,作为下一级输入。通过网络对Scale值的学习,增强重要特征,减弱不重要特征,使得提取的特征指向性更强。公式如下:
(4)SE block经典嵌入结构
(5)总结
SE模块非常好用,可根据自己的网络结构,应用到合适的地方。
Squeeze-and-Excitation Networks论文解读
最新推荐文章于 2024-10-05 01:15:00 发布