卷积神经网络CNN

本文介绍了卷积神经网络(CNN)的基础知识,包括卷积层、池化层和全连接层的结构与作用。CNN主要用于图像处理,通过卷积运算提取特征,池化层则负责降维和减少冗余,全连接层整合特征并进行分类。此外,还强调了CNN的局部连接和权值共享两大优点。
摘要由CSDN通过智能技术生成
你以为挑起生活的担子是勇气,其实去过自己真正想要的生活才更需要勇气——萨姆门德斯

一.卷积神经网络理论介绍

深度机器学习中卷积神经网络(convolutional neural networks,简称CNN)是深度学习中应用较广的一种算法。卷积神经网络大多用于图像处理以及预测等领域,它是通过卷积核进行卷积运算的,一般是通过获取输入图像的隐藏特征,然后将这些特征组合在一起,再经过一次或多次池化的处理,最终通过输出层的神经元根据图像的特征然后进行分类。

为什么会叫卷积?因为在神经网络中引入了“卷积核”,用来提取图像的一些特征;因为在图像识别中,我们辨别一张图片是什么,往往是通过判断该图像具有什么样的显著特征。

比如:给你一张橘子的图片,根据什么原因才可能确定那是一个橘子&
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值