- pytorch模型的训练
1、数据集划分及转化
数据集根据我自身的需要我将其划分为如下
Annotations里面存放着xml格式的标签文件
JPEGImages里面存放着照片数据文件
然后利用数据集转换.py 中的代码进行转换,
TRAIN_RATIO为数据集中的训练集的比重,设置为80%
转换后的结果:
labels中即为转化后的yoloV5的.txt数据集,train是训练集,val是验证集
2.模型训练
从GitHub - ultralytics/yolov5 at v5.0将代码克隆到本地。
将之前转换和划分好的数据集放入,修改yolo5s.yaml文件、voc.yaml文件参数,修改train.py参数
运行train.py进行训练
生成best.pt和last.pt文件
- 模型的转换
- pytorch àonnx
在原yolov5训练好的项目中,在export.py文件中修改 这几个地方:
然后运行就能生成在best.pt的目录下生成best.onnx文件。
2. .onnxàrknn
主要参考(98条消息) 将onnx模型转化为RV1126平台的rknn模型_陈 洪 伟的博客-CSDN博客,将其中的脚本拷贝下来,新建项目,将生成的onnx文件放进去修改这几个地方:
这个地方也可以修改
这里的dataset.txt是用来验证的数据集,就是数据图片的路径全都存在这里。
这里自己写了一个小程序生成dataset.txt,将dataset也放进刚刚的项目中。
运行onnx->rknn。运行完后就会生成一个.rknn的文件。