关于如何将pytorch模型转换为onnx及onnx转换为rknn

  • pytorch模型的训练

1、数据集划分及转化

数据集根据我自身的需要我将其划分为如下

 Annotations里面存放着xml格式的标签文件

JPEGImages里面存放着照片数据文件

然后利用数据集转换.py 中的代码进行转换,

TRAIN_RATIO为数据集中的训练集的比重,设置为80%

转换后的结果:

labels中即为转化后的yoloV5的.txt数据集,train是训练集,val是验证集

2.模型训练

GitHub - ultralytics/yolov5 at v5.0将代码克隆到本地。

将之前转换和划分好的数据集放入,修改yolo5s.yaml文件、voc.yaml文件参数,修改train.py参数


运行train.py进行训练

生成best.ptlast.pt文件

  • 模型的转换
  1. pytorch àonnx

在原yolov5训练好的项目中,在export.py文件中修改   这几个地方:

    

然后运行就能生成在best.pt的目录下生成best.onnx文件。

2. .onnxàrknn

主要参考(98条消息) 将onnx模型转化为RV1126平台的rknn模型_陈 洪 伟的博客-CSDN博客,将其中的脚本拷贝下来,新建项目,将生成的onnx文件放进去修改这几个地方:

这个地方也可以修改

这里的dataset.txt是用来验证的数据集,就是数据图片的路径全都存在这里。

这里自己写了一个小程序生成dataset.txt,将dataset也放进刚刚的项目中。

运行onnx->rknn。运行完后就会生成一个.rknn的文件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A Tiger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值