Prometheus
//Prometheus 概述:
Prometheus 是一个开源的服务监控系统和时序数据库,其提供了通用的数据模型和快捷数据采集、存储和查询接口。它的核心组件 Prometheus server 会定期从静态配置的监控目标或者基于服务发现自动配置的目标中进行拉取数据,当新拉取到的数据大于配置的内存缓存区时,数据就会持久化到存储设备当中。每个采样数据占3.5 bytes左右,300万的时间序列,30s间隔,保留60天,消耗磁盘大概200G。
每个被监控的主机都可以通过专用的 exporter 程序提供输出监控数据的接口,它会在目标处收集监控数据,并暴露出一个 HTTP接口供 Prometheus server 查询,Prometheus 通过基于 HTTP 的 pull 的方式来周期性的采集数据。
如果存在告警规则,则抓取到数据之后会根据规则进行计算,满足告警条件则会生成告警,并发送到 Alertmanager 完成告警的汇总和分发。
当被监控的目标有主动推送数据的需求时,可以以 Pushgateway 组件进行接收并临时存储数据,然后等待 Prometheus server 完成数据的采集。
任何被监控的目标都需要事先纳入到监控系统中才能进行时序数据采集、存储、告警和展示,监控目标可以通过配置信息以静态形式指定,也可以让 Prometheus 通过服务发现的机制进行动态管理。
Prometheus 能够直接把 API Server 作为服务发现系统使用,进而动态发现和监控集群中的所有可被监控的对象。
//Prometheus的特点:
●多维数据模型:由度量名称和键值对标识的时间序列数据
●内置时间序列数据库:TSDB 外置的通常会用:Thanos
●promQL:一种灵活的查询语言,可以利用多维数据完成复杂查询
●基于HTTP的pull(拉取)方式采集时间序列数据
●同时支持PushGateway组件收集数据
●通过服务发现或静态配置发现目标
●支持作为数据源接入Grafana
Prometheus 生态系统包含了几个关键的组件:Prometheus server、Exporter、Pushgateway、Alertmanager、Web UI 等, 但是大多数组件都不是必需的。
其中最核心的组件是 Prometheus server,它负责收集和存储指标数据,支持表达式查询,和告警的生成。
//Prometheus server由三个部分组成:Retrieval,Storage,PromQL
●Retrieval:负责在活跃的 target 主机上抓取监控指标数据。
●Storage:存储,主要是把采集到的数据存储到磁盘中。
●PromQL:是 Prometheus 提供的查询语言模块。
//组件说明:
(1)Prometheus server:服务核心组件,采用 pull 方式收集 apiserver、scheduler、controller-manager、kubelet 组件数据, 通过 http 协议传输。并存储时间序列数据。
(2)Exporters/Jobs:负责收集不支持Instrumentation的目标对象(host, container…)的性能数据,并通过 HTTP 接口供 Prometheus Server 获取。
●Node-Exporter:用于收集k8s集群中各node节点的物理指标状态数据,如平均负载、CPU、内存、磁盘、网络等资源信息的指标数据,需要部署到所有运算节点。
●Kube-State-Metrics:为prometheus采集k8s资源数据的exporter,通过监听APIServer收集kubernetes集群内资源对象的状态指标数据,例如pod、deployment、service等等。同时它也提供自己的数据,主要是资源采集个数和采集发生的异常次数统计。
需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?有多少job在运行中。
●cadvisor:用来监控容器内部使用资源的信息,比如 CPU、内存、网络I/O、磁盘I/O。
●blackbox-exporter:监控业务容器存活性。
(3)Service Discovery:服务发现,Prometheus支持多种服务发现机制:文件,DNS,Consul,Kubernetes,OpenStack,EC2等等。 基于服务发现的过程并不复杂,通过第三方提供的接口,Prometheus查询到需要监控的Target列表,然后轮训这些Target获取监控数据。
(4)Alertmanager:是一个独立的告警模块,从 Prometheus server 端接收到 alerts 后,会进行去重、分组, 并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉等。
(5)Pushgateway:类似一个中转站,Prometheus 的 server 端只会使用 pull 方式拉取数据,但是某些节点因为某些原因只能使用 push 方式推送数据,那么它就是用来接收 push 而来的数据并暴露给 Prometheus 的 server 拉取的中转站。 可以理解成目标主机可以上报短期任务的数据到 Pushgateway,然后 Prometheus server 统一从 Pushgateway 拉取数据。
(6)Grafana:是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通知给告警接收方。其官方库中具有丰富的仪表盘插件。
//Prometheus 工作流程:
(1)Prometheus 以 Prometheus Server 为核心,用于收集和存储时间序列数据。Prometheus Server 从监控目标中通过 pull 方式拉取指标数据,或通过 pushgateway 把采集的数据拉取到 Prometheus server 中。
(2)Prometheus server 把采集到的监控指标数据通过 TSDB 存储到本地 HDD/SSD 中。
(3)Prometheus 采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到 Alertmanager。
(4)Alertmanager 通过配置报警接收方,发送报警到邮件,微信或者钉钉等。
(5)Prometheus 自带的 Web UI 界面提供 PromQL 查询语言,可查询监控数据。
(6)Grafana 可接入 Prometheus 数据源,把监控数据以图形化形式展示出。
Prometheus 官网地址:https://prometheus.io
Prometheus github 地址:https://github.com/prometheus
------------------- Kubernetes 集群部署 Prometheus 和 Grafana -------------------
//实验环境
控制节点/master01 192.168.80.10
工作节点/node01 192.168.80.11
工作节点/node02 192.168.80.12
//node-exporter 安装
#创建监控 namespace
kubectl create ns monitor-sa
#部署 node-exporter
mkdir /opt/prometheus
cd /opt/prometheus/
vim node-export.yaml
---
apiVersion: apps/v1
kind: DaemonSet #可以保证 k8s 集群的每个节点都运行完全一样的 pod
metadata:
name: node-exporter
namespace: monitor-sa
labels:
name: node-exporter
spec:
selector:
matchLabels:
name: node-exporter
template:
metadata:
labels:
name: node-exporter
spec:
hostPID: true
hostIPC: true
hostNetwork: true
containers:
- name: node-exporter
image: prom/node-exporter:v0.16.0
ports:
- containerPort: 9100
resources:
requests:
cpu: 0.15 #这个容器运行至少需要0.15核cpu
securityContext:
privileged: true #开启特权模式
args:
- --path.procfs
- /host/proc
- --path.sysfs
- /host/sys
- --collector.filesystem.ignored-mount-points
- '"^/(sys|proc|dev|host|etc)($|/)"'
volumeMounts:
- name: dev
mountPath: /host/dev
- name: proc
mountPath: /host/proc
- name: sys
mountPath: /host/sys
- name: rootfs
mountPath: /rootfs
tolerations:
- key: "node-role.kubernetes.io/master"
operator: "Exists"
effect: "NoSchedule"
volumes:
- name: proc
hostPath:
path: /proc
- name: dev
hostPath:
path: /dev
- name: sys
hostPath:
path: /sys
- name: rootfs
hostPath:
path: /
#hostNetwork、hostIPC、hostPID都为True时,表示这个Pod里的所有容器,会直接使用宿主机的网络,直接与宿主机进行IPC(进程间通信)通信,可以看到宿主机里正在运行的所有进程。加入了hostNetwork:true会直接将我们的宿主机的9100端口映射出来,从而不需要创建service在我们的宿主机上就会有一个9100的端口。
kubectl apply -f node-export.yaml
kubectl get pods -n monitor-sa -o wide
#通过 node-exporter 采集数据
node-exporter 默认的监听端口是 9100,可以执行 curl http://主机ip:9100/metrics 获取到主机的所有监控数据
curl -Ls http://192.168.80.10:9100/metrics | grep node_cpu_seconds
# HELP node_cpu_seconds_total Seconds the cpus spent in each mode. #Help 用于解释当前指标的含义
# TYPE node_cpu_seconds_total counter #Type 用于说明数据的类型,这是一个 counter(计数器)类型的数据
node_cpu_seconds_total{cpu="0",mode="idle"} 1076.15 #接下来就是具体的指标的值
node_cpu_seconds_total{cpu="0",mode="iowait"} 0.99
node_cpu_seconds_total{cpu="0",mode="irq"} 0
node_cpu_seconds_total{cpu="0",mode="nice"} 0
node_cpu_seconds_total{cpu="0",mode="softirq"} 3.15
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 23.17
node_cpu_seconds_total{cpu="0",mode="user"} 24.49
node_cpu_seconds_total{cpu="1",mode="idle"} 1079.71
node_cpu_seconds_total{cpu="1",mode="iowait"} 0.75
node_cpu_seconds_total{cpu="1",mode="irq"} 0
node_cpu_seconds_total{cpu="1",mode="nice"} 0
node_cpu_seconds_total{cpu="1",mode="softirq"} 3.6
node_cpu_seconds_total{cpu="1",mode="steal"} 0
node_cpu_seconds_total{cpu="1",mode="system"} 22.04
node_cpu_seconds_total{cpu="1",mode="user"} 25.6
curl -Ls http://192.168.80.10:9100/metrics | grep node_load
# HELP node_load1 1m load average.
# TYPE node_load1 gauge
node_load1 0.24
# HELP node_load15 15m load average.
# TYPE node_load15 gauge
node_load15 0.16
# HELP node_load5 5m load average.
# TYPE node_load5 gauge
node_load5 0.18
//Prometheus 安装和配置
(1)创建 sa 账号,对 sa 做 rbac 授权
#创建一个 sa 账号 monitor
kubectl create serviceaccount monitor -n monitor-sa
#把 sa 账号 monitor 通过 clusterrolebing 绑定到 clusterrole 上
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
(2)创建一个 configmap 存储卷,用来存放 prometheus 配置信息
vim prometheus-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
global: #指定prometheus的全局配置,比如采集间隔,抓取超时时间等
scrape_interval: 15s #采集目标主机监控数据的时间间隔,默认为1m
scrape_timeout: 10s #数据采集超时时间,默认10s
evaluation_interval: 1m #触发告警生成alert的时间间隔,默认是1m
scrape_configs: #配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现
- job_name: 'kubernetes-node'
kubernetes_sd_configs: # *_sd_configs 指定的是k8s的服务发现
- role: node #使用node角色,它使用默认的kubelet提供的http端口来发现集群中每个node节点
relabel_configs: #重新标记
- source_labels: [__address__] #配置的原始标签,匹配地址
regex: '(.*):10250' #匹配带有10250端口的url
replacement: '${1}:9100' #把匹配到的ip:10250的ip保留
target_label: __address__ #新生成的url是${1}获取到的ip:9100
action: replace #动作替换
- action: labelmap
regex: __meta_kubernetes_node_label_(.+) #匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签
- job_name: 'kubernetes-node-cadvisor' #抓取cAdvisor数据,是获取kubelet上/metrics/cadvisor接口数据来获取容器的资源使用情况
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap #把匹配到的标签保留
regex: __meta_kubernetes_node_label_(.+) #保留匹配到的具有__meta_kubernetes_node_label的标签
- target_label: __address__ #获取到的地址:__address__="192.168.80.20:10250"
replacement: kubernetes.default.svc:443 #把获取到的地址替换成新的地址kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+) #把原始标签中__meta_kubernetes_node_name值匹配到
target_label: __metrics_path__ #获取__metrics_path__对应的值
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
#把metrics替换成新的值api/v1/nodes/k8s-master1/proxy/metrics/cadvisor
#${1}是__meta_kubernetes_node_name获取到的值
#新的url就是https://kubernetes.default.svc:443/api/v1/nodes/k8s-master1/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints #使用k8s中的endpoint服务发现,采集apiserver 6443端口获取到的数据
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] #[endpoint这个对象的名称空间,endpoint对象的服务名,exnpoint的端口名称]
action: keep #采集满足条件的实例,其他实例不采集
regex: default;kubernetes;https #正则匹配到的默认空间下的service名字是kubernetes,协议是https的endpoint类型保留下来
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
#重新打标仅抓取到的具有"prometheus.io/scrape: true"的annotation的端点, 意思是说如果某个service具有prometheus.io/scrape = true的annotation声明则抓取,annotation本身也是键值结构, 所以这里的源标签设置为键,而regex设置值true,当值匹配到regex设定的内容时则执行keep动作也就是保留,其余则丢弃。
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
#重新设置scheme,匹配源标签__meta_kubernetes_service_annotation_prometheus_io_scheme也就是prometheus.io/scheme annotation,如果源标签的值匹配到regex,则把值替换为__scheme__对应的值。
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
#应用中自定义暴露的指标,也许你暴露的API接口不是/metrics这个路径,那么你可以在这个POD对应的service中做一个 "prometheus.io/path = /mymetrics" 声明,上面的意思就是把你声明的这个路径赋值给__metrics_path__, 其实就是让prometheus来获取自定义应用暴露的metrices的具体路径, 不过这里写的要和service中做好约定,如果service中这样写 prometheus.io/app-metrics-path: '/metrics' 那么你这里就要__meta_kubernetes_service_annotation_prometheus_io_app_metrics_path这样写。
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
#暴露自定义的应用的端口,就是把地址和你在service中定义的 "prometheus.io/port = <port>" 声明做一个拼接, 然后赋值给__address__,这样prometheus就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标,如果__metrics_path__值不是默认的/metrics那么就要使用上面的标签替换来获取真正暴露的具体路径。
- action: labelmap #保留下面匹配到的标签
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace #替换__meta_kubernetes_namespace变成kubernetes_namespace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
kubectl apply -f prometheus-cfg.yaml
(3)通过 deployment 部署 prometheus
#将 prometheus 调度到 node1 节点,在 node1 节点创建 prometheus 数据存储目录
mkdir /data && chmod 777 /data
#通过 deployment 部署 prometheus
vim prometheus-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: node01 #指定pod调度到哪个节点上
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- prometheus
- --config.file=/etc/prometheus/prometheus.yml
- --storage.tsdb.path=/prometheus #数据存储目录
- --storage.tsdb.retention=720h #数据保存时长
- --web.enable-lifecycle #开启热加载
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus/prometheus.yml
name: prometheus-config
subPath: prometheus.yml
- mountPath: /prometheus/
name: prometheus-storage-volume
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
items:
- key: prometheus.yml
path: prometheus.yml
mode: 0644
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
kubectl apply -f prometheus-deploy.yaml
kubectl get pods -o wide -n monitor-sa
(4)给 prometheus pod 创建一个 service
vim prometheus-svc.yaml
---
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
nodePort: 31000
selector:
app: prometheus
component: server
kubectl apply -f prometheus-svc.yaml
kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus NodePort 10.107.188.51 <none> 9090:31000/TCP 86s
#通过上面可以看到 service 在 node 节点上映射的端口是 31000,这样我们访问 k8s 集群的 node 节点的 ip:31000,就可以访问到 prometheus 的 web ui 界面了。
浏览器访问 http://192.168.80.11:31000
#点击页面的Status->Targets,如看到所有 Target 状态都为 UP,说明我们配置的服务发现可以正常采集数据
#查询 K8S 集群中一分钟之内每个 Pod 的 CPU 使用率
sum by (name)( rate(container_cpu_usage_seconds_total{image!="", name!=""}[1m] ) )
//Prometheus 配置热加载
###为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,想要使配置生效可用如下热加载命令:
kubectl get pods -n monitor-sa -o wide -l app=prometheus
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
prometheus-server-75fb7f8fc6-8vxwj 1/1 Running 0 18h 10.244.1.3 node01 <none> <none>
#想要使配置生效可用如下命令热加载
curl -X POST -Ls http://10.244.1.3:9090/-/reload
#查看 log
kubectl logs -n monitor-sa prometheus-server-75fb7f8fc6-8vxwj | grep "Loading configuration file"
###一般热加载速度比较慢,可以暴力重启prometheus,如修改上面的 prometheus-cfg.yaml 文件之后,可用如下命令:
#可执行先强制删除,然后再通过 apply 更新
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml
注意:线上环境最好使用热加载,暴力删除可能造成监控数据的丢失
//Grafana 安装
vim grafana.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
containers:
- name: grafana
image: grafana/grafana:5.0.4
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var
name: grafana-storage
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
kubectl apply -f grafana.yaml
kubectl get pods -n kube-system -l task=monitoring -o wide
kubectl get svc -n kube-system | grep grafana
monitoring-grafana NodePort 10.96.53.95 <none> 80:32087/TCP 26s
//Grafana 配置
(1)浏览器访问http://192.168.80.11:32087 ,登陆 grafana
(2)开始配置 grafana 的 web 界面:选择 Add data source
【Name】设置成 Prometheus
【Type】选择 Prometheus
【URL】设置成 http://prometheus.monitor-sa.svc:9090 #使用service的集群内部端口配置服务端地址
点击 【Save & Test】
(3)导入监控模板
官方链接搜索:https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
(4)监控 node 状态
点击左侧+号选择【Import】
点击【Upload .json File】导入 node_exporter.json 模板
【Prometheus】选择 Prometheus
点击【Import】
(5)监控 容器 状态
点击左侧+号选择【Import】
点击【Upload .json File】导入 docker_rev1.json 模板
【Prometheus】选择 Prometheus
点击【Import】
//k8s 部署 kube-state-metrics 组件
(1)安装 kube-state-metrics 组件
#创建 sa,并对 sa 授权
vim kube-state-metrics-rbac.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kube-state-metrics
rules:
- apiGroups: [""]
resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources: ["daemonsets", "deployments", "replicasets"]
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources: ["statefulsets"]
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources: ["cronjobs", "jobs"]
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
kubectl apply -f kube-state-metrics-rbac.yaml
#安装 kube-state-metrics 组件和 service
vim kube-state-metrics-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: kube-state-metrics
template:
metadata:
labels:
app: kube-state-metrics
spec:
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
image: quay.io/coreos/kube-state-metrics:v1.9.0
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: kube-system
labels:
app: kube-state-metrics
spec:
ports:
- name: kube-state-metrics
port: 8080
protocol: TCP
selector:
app: kube-state-metrics
kubectl apply -f kube-state-metrics-deploy_svc.yaml
kubectl get pods,svc -n kube-system -l app=kube-state-metrics
(2)Grafana 配置
#监控 k8s 群集状态
点击左侧+号选择【Import】
点击【Upload .json File】导入 kubernetes-cluster-prometheus_rev4.json 模板
【Prometheus】选择 Prometheus
点击【Import】
#监控 k8s 群集性能状态
点击左侧+号选择【Import】
点击【Upload .json File】导入 kubernetes-cluster-monitoring-via-prometheus_rev3.json 模板
【Prometheus】选择 Prometheus
点击【Import】
------------------- kubernetes 配置 alertmanager 发送报警到邮箱 -------------------
//Prometheus报警处理流程
1)Prometheus Server 监控目标主机上暴露的 http接口(假设接口A),通过Promethes配置的'scrape_interval' 定义的时间间隔, 定期采集目标主机上监控数据。
2)当接口A不可用的时候,Server 端会持续的尝试从接口中取数据,直到 "scrape_timeout" 时间后停止尝试。 这时候把接口的状态变为 "DOWN"。
3)Prometheus 同时根据配置的 evaluation_interval 的时间间隔,定期(默认1min)的对 Alert Rule 进行评估; 当到达评估周期的时候,发现接口A为 DOWN,即 UP=0 为真,激活 Alert,进入 PENDING 状态,并记录当前 active 的时间;
4)当下一个 alert rule 的评估周期到来的时候,发现 UP=0 继续为真,然后判断警报 Active 的时间是否已经超出 rule 里的 for 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,则 alert 的状态变为 FIRING;同时调用 Alertmanager 接口, 发送相关报警数据。
5)AlertManager 收到报警数据后,会将警报信息进行分组,然后根据 alertmanager 配置的 group_wait 时间先进行等待。等 wait 时间过后再发送报警信息。
6)属于同一个 Alert Group的警报,在等待的过程中可能进入新的 alert,如果之前的报警已经成功发出,那么间隔 group_interval 的时间间隔后再重新发送报警信息。比如配置的是邮件报警,那么同属一个 group 的报警信息会汇总在一个邮件里进行发送。
7)如果 Alert Group里的警报一直没发生变化并且已经成功发送,等待 repeat_interval 时间间隔之后再重复发送相同的报警邮件; 如果之前的警报没有成功发送,则相当于触发第6条条件,则需要等待 group_interval 时间间隔后重复发送。
8)同时最后至于警报信息具体发给谁,满足什么样的条件下指定警报接收人,设置不同报警发送频率,这里使用 alertmanager 的 route 路由规则进行配置。
//Prometheus 及 Alertmanager 配置
(1)创建 alertmanager 配置文件
vim alertmanager-cm.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global: #设置发件人邮箱信息
resolve_timeout: 1m
smtp_smarthost: 'smtp.qq.com:25'
smtp_from: 'qwe4546456@qq.com'
smtp_auth_username: 'qwe4546456@qq.com'
smtp_auth_password: 'zzkqqtejcbenbidh' #此处为授权码,登录QQ邮箱【设置】->【账户】中的【生成授权码】获取
smtp_require_tls: false
route: #用于设置告警的分发策略
group_by: [alertname] #采用哪个标签来作为分组依据
group_wait: 10s #组告警等待时间。也就是告警产生后等待10s,如果有同组告警一起发出
group_interval: 10s #上下两组发送告警的间隔时间
repeat_interval: 10m #重复发送告警的时间,减少相同邮件的发送频率,默认是1h
receiver: default-receiver #定义谁来收告警
receivers: #设置收件人邮箱信息
- name: 'default-receiver'
email_configs:
- to: 'qwe4546456@wo.cn' #设置收件人邮箱地址
send_resolved: true
kubectl apply -f alertmanager-cm.yaml
(2)创建 prometheus 和告警规则配置文件
#上传 prometheus-alertmanager-cfg.yaml 文件
#删除之前的配置,更新配置
kubectl delete -f prometheus-cfg.yaml
kubectl apply -f prometheus-alertmanager-cfg.yaml
kubectl get cm -n monitor-sa
alertmanager 1 2m29s
kube-root-ca.crt 1 14h
prometheus-config 2 29s
(3)安装 prometheus 和 alertmanager
#生成一个 secret 资源 etcd-certs,这个在部署 prometheus 需要,用于监控 etcd 相关资源
kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
#更新资源清单 yaml 文件,安装 prometheus 和 alertmanager
vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: node01
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
- name: localtime
mountPath: /etc/localtime
- name: alertmanager
image: prom/alertmanager:v0.14.0
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
protocol: TCP
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager-storage
mountPath: /alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
- name: k8s-certs
secret:
secretName: etcd-certs
- name: alertmanager-config
configMap:
name: alertmanager
- name: alertmanager-storage
hostPath:
path: /data/alertmanager
type: DirectoryOrCreate
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
kubectl delete -f prometheus-deploy.yaml
kubectl apply -f prometheus-alertmanager-deploy.yaml
kubectl get pods -n monitor-sa | grep prometheus
(4)部署 alertmanager 的 service,方便在浏览器访问
vim alertmanager-svc.yaml
---
apiVersion: v1
kind: Service
metadata:
labels:
name: prometheus
kubernetes.io/cluster-service: 'true'
name: alertmanager
namespace: monitor-sa
spec:
ports:
- name: alertmanager
nodePort: 30066
port: 9093
protocol: TCP
targetPort: 9093
selector:
app: prometheus
sessionAffinity: None
type: NodePort
kubectl apply -f alertmanager-svc.yaml
#查看 service 在物理机映射的端口
kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager NodePort 10.105.125.219 <none> 9093:30066/TCP 38s
prometheus NodePort 10.107.188.51 <none> 9090:31000/TCP 23h
#此时可以看到 prometheus 的 service 在物理机映射的端口是 31000,alertmanager 的 service 在物理机映射的端口是 30066
浏览器访问 http://192.168.80.11:30066/#/alerts ,登陆 alertmanager
查看接收到的邮件报警,可以发现与 alertmanager 显示的告警一致
浏览器访问 http://192.168.80.11:31000 ,点击页面的 Status->Targets,查看 prometheus 的 targets
//处理 kube-proxy 监控告警
kubectl edit configmap kube-proxy -n kube-system
......
metricsBindAddress: "0.0.0.0:10249"
#因为 kube-proxy 默认端口10249是监听在 127.0.0.1 上的,需要改成监听到物理节点上
#重新启动 kube-proxy
kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system
ss -antulp |grep :10249
tcp LISTEN 0 128 :::10249 :::* users:(("kube-proxy",pid=55675,fd=15))
#alert 查看
点击 prometheus 页面的 Alerts,点开一个告警项,FIRING 表示 prometheus 已经将告警发给 alertmanager,在 Alertmanager 中可以看到有一个 alert。登录到 浏览器访问 http://192.168.80.11:30066/#/alerts ,登陆 alertmanager 即可看到。