概述
ConcurrentHashMap 是 Java 并发集合框架中基于分段锁(Java 7)或 CAS + synchronized
分段优化(Java 8+)实现的高并发线程安全哈希表,适用于高并发场景下的键值存储。它通过细粒度锁和原子操作,在保证线程安全的同时提供高性能的并发读写能力。
一、核心特性
- 线程安全:支持多线程并发读写,无需外部同步。
- 分段锁优化(Java 8+):
- 使用
Node
+synchronized
锁单个桶(链表或红黑树),而非全局锁。 - 通过 CAS(Compare-And-Swap)实现无锁化的插入和扩容。
- 使用
- 原子性方法:支持
computeIfAbsent
、merge
等原子操作,避免竞态条件。 - 弱一致性迭代器:遍历时反映创建迭代器后的部分修改(不保证实时一致性)。
- 高并发性能:读操作完全无锁,写操作锁粒度细化到单个桶。
- 空值限制:不允许
null
键或值(防止并发场景下的歧义)。 - 兼容性:支持 Java 17 的模块化系统(JPMS)。
二、与 HashMap、Hashtable 的对比
特性 | ConcurrentHashMap | Hashtable | HashMap |
---|---|---|---|
线程安全 | ✅(分段锁/CAS优化) | ✅(全表锁) | ❌ |
性能 | 高并发下性能优 | 低(全局锁阻塞) | 单线程下最高 |
空值支持 | ❌ | ❌ | ✅ |
迭代器一致性 | 弱一致性 | 强一致性(全锁遍历) | 快速失败(Fail-Fast) |
三、应用场景
- 高并发缓存:如缓存用户会话、商品信息。
- 计数器:实时统计(如点击量、在线人数)。
- 实时数据处理:多线程写入并聚合结果(如日志分析)。
- 替代
synchronizedMap
:需要高性能且线程安全的键值存储。 - 分布式系统本地存储:在单机多线程环境下替代分布式缓存。
四、示例代码
1. 基本操作(线程安全插入与遍历)
import java.util.concurrent.ConcurrentHashMap;
public class BasicDemo {
public static void main(String[] args) {
ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();
// 多线程并发插入
Runnable task = () -> {
for (int i = 0; i < 1000; i++) {
map.put(Thread.currentThread().getName() + "-" + i, i);
}
};
Thread t1 = new Thread(task);
Thread t2 = new Thread(task);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("Map大小: " + map.size()); // 2000(无重复键)
}
}
2. 原子操作(避免竞态条件)
// 统计单词频率(线程安全)
ConcurrentHashMap<String, Integer> wordCount = new ConcurrentHashMap<>();
List<String> words = List.of("apple", "banana", "apple", "orange", "banana");
words.parallelStream().forEach(word -> {
// 原子性更新:若键不存在则初始化为1,否则递增
wordCount.compute(word, (k, v) -> (v == null) ? 1 : v + 1);
});
System.out.println(wordCount); // {orange=1, banana=2, apple=2}
3. 合并与替换(原子方法)
ConcurrentHashMap<String, Integer> scores = new ConcurrentHashMap<>();
scores.put("Alice", 90);
// 合并操作(原子性)
scores.merge("Alice", 10, (oldVal, delta) -> oldVal + delta); // Alice: 100
scores.merge("Bob", 80, (oldVal, delta) -> oldVal + delta); // Bob: 80(自动插入)
// 替换操作(原子性)
scores.replace("Alice", 100, 95); // 仅当当前值为100时替换为95
4. 批量方法(Java 8+)
// 并行搜索(查找第一个值大于50的键)
String resultKey = scores.search(1, (k, v) -> v > 50 ? k : null);
System.out.println("找到的键: " + resultKey); // 如 "Alice"
// 并行遍历(线程安全)
scores.forEach(2, (k, v) -> System.out.println(k + ": " + v));
// 归约计算(求和)
int sum = scores.reduce(2, (k, v) -> v, Integer::sum);
System.out.println("总分: " + sum);
5. 实现 LRU 缓存(线程安全)
public class ConcurrentLRUCache<K, V> {
private final ConcurrentHashMap<K, V> cache;
private final ConcurrentLinkedQueue<K> queue;
private final int maxSize;
public ConcurrentLRUCache(int maxSize) {
this.maxSize = maxSize;
this.cache = new ConcurrentHashMap<>(maxSize);
this.queue = new ConcurrentLinkedQueue<>();
}
public V get(K key) {
V value = cache.get(key);
if (value != null) {
queue.remove(key); // 需优化为 O(1) 操作(实际生产环境建议用自定义数据结构)
queue.add(key);
}
return value;
}
public void put(K key, V value) {
if (cache.size() >= maxSize) {
K oldest = queue.poll();
if (oldest != null) {
cache.remove(oldest);
}
}
cache.put(key, value);
queue.add(key);
}
}
五、注意事项
1、复合操作仍需同步:
例如 if (map.containsKey(k)) map.put(k, v)
并非原子操作,应改用 computeIfAbsent
:
map.computeIfAbsent(k, key -> createExpensiveValue(key));
2、避免在原子方法中阻塞:
compute
、merge
等方法中的函数应尽量简短,避免长时间阻塞导致其他线程等待。
3、扩容开销:
并发扩容时可能短暂阻塞,初始化时可预估容量以减少扩容次数:
new ConcurrentHashMap<>(initialCapacity, 0.75f, concurrencyLevel);
4、迭代器弱一致性:
遍历时可能不反映最新修改,需根据场景选择强一致性方案(如加锁)。
5、替代方案:
极端高并发场景下,可考虑 ConcurrentHashMap
的分段锁优化或分布式缓存(如 Redis)。
六、总结
在 Java 17 中,ConcurrentHashMap
是处理高并发键值存储的首选工具,其核心优势包括:
- 分段锁优化:通过细粒度锁和 CAS 实现高并发性能。
- 原子操作:简化线程安全的复合逻辑。
- 批量方法:利用
search
、forEach
、reduce
并行处理数据。
适用场景包括缓存、计数器、实时聚合等。结合 Java 17 的现代特性(如并行流),能高效解决多线程数据共享问题。需注意其弱一致性和复合操作陷阱,合理设计代码以确保线程安全与性能平衡。