SDOI 2015 约数个数和 题解

题目传送门

题目大意: ∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i=1}^n \sum_{j=1}^m d(ij) i=1nj=1md(ij) d ( x ) d(x) d(x) x x x 的因数个数。

题解

首先要知道 d d d一个性质,有了这个性质就可以愉快地推柿子了!
∑ i = 1 n ∑ j = 1 m d ( i j ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( x , y ) = 1 ] \sum_{i=1}^n \sum_{j=1}^m d(ij)\\ =\sum_{i=1}^n \sum_{j=1}^m \sum_{x|i} \sum_{y|j} [\gcd(x,y)=1] i=1nj=1md(ij)=i=1nj=1mxiyj[gcd(x,y)=1]

更改枚举对象,于是有
= ∑ x = 1 n ∑ y = 1 m [ gcd ⁡ ( x , y ) = 1 ] ⌊ n x ⌋ ⌊ m y ⌋ =\sum_{x=1}^n \sum_{y=1}^m [\gcd(x,y)=1]\lfloor \frac n x \rfloor \lfloor \frac m y \rfloor =x=1ny=1m[gcd(x,y)=1]xnym

套个莫比乌斯反演(强行安利博客qwq),于是变成
= ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ ∑ d ∣ g c d ( x , y ) μ ( d ) = ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ ∑ d = 1 min ⁡ ( n , m ) μ ( d ) [ d ∣ gcd ⁡ ( x , y ) ] = ∑ d = 1 min ⁡ ( n , m ) μ ( d ) ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ [ d ∣ gcd ⁡ ( x , y ) ] = ∑ d = 1 min ⁡ ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n d x ⌋ ⌊ m d y ⌋ = ∑ d = 1 min ⁡ ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ⌊ n d x ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ m d y ⌋ =\sum_{x=1}^n \sum_{y=1}^m \lfloor \frac n x \rfloor \lfloor \frac m y \rfloor \sum_{d|gcd(x,y)} \mu(d)\\ =\sum_{x=1}^n \sum_{y=1}^m \lfloor \frac n x \rfloor \lfloor \frac m y \rfloor \sum_{d=1}^{\min(n,m)}\mu(d)[d|\gcd(x,y)]\\ =\sum_{d=1}^{\min(n,m)}\mu(d)\sum_{x=1}^n \sum_{y=1}^m \lfloor \frac n x \rfloor \lfloor \frac m y \rfloor [d|\gcd(x,y)]\\ =\sum_{d=1}^{\min(n,m)}\mu(d) \sum_{x=1}^{\lfloor \frac n d \rfloor} \sum_{y=1}^{\lfloor \frac m d \rfloor} \lfloor \frac n {dx} \rfloor \lfloor \frac m {dy} \rfloor\\ =\sum_{d=1}^{\min(n,m)}\mu(d) \sum_{x=1}^{\lfloor \frac n d \rfloor} \lfloor \frac n {dx} \rfloor \sum_{y=1}^{\lfloor \frac m d \rfloor} \lfloor \frac m {dy} \rfloor =x=1ny=1mxnymdgcd(x,y)μ(d)=x=1ny=1mxnymd=1min(n,m)μ(d)[dgcd(x,y)]=d=1min(n,m)μ(d)x=1ny=1mxnym[dgcd(x,y)]=d=1min(n,m)μ(d)x=1dny=1dmdxndym=d=1min(n,m)μ(d)x=1dndxny=1dmdym

g ( x ) = ∑ i = 1 x ⌊ x i ⌋ g(x)=\sum_{i=1}^x \lfloor \frac x i \rfloor g(x)=i=1xix,那么柿子变成
= ∑ d = 1 min ⁡ ( n , m ) μ ( d ) × g ( ⌊ n d ⌋ ) × g ( ⌊ m d ⌋ ) =\sum_{d=1}^{\min(n,m)}\mu(d) \times g(\lfloor \frac n d \rfloor) \times g(\lfloor \frac m d \rfloor) =d=1min(n,m)μ(d)×g(dn)×g(dm)

先用除法分块预处理 g g g,然后线性筛出 μ \mu μ ,在求个前缀和,最后上面这条式子用除法分块搞一搞即可。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 50010
#define ll long long

int t,n,m;
ll ans;
ll mu[maxn],g[maxn];
int prime[maxn],tt=0;
bool v[maxn];
void work()
{
	mu[1]=1;
	for(int i=2;i<=maxn-10;i++)//线性筛mu
	{
		if(!v[i])prime[++tt]=i,mu[i]=-1;
		for(int j=1;j<=tt&&i*prime[j]<=maxn-10;j++)
		{
			v[i*prime[j]]=true;
			if(i%prime[j]==0)break;
			mu[i*prime[j]]=mu[i]*mu[prime[j]];
		}
	}
	for(int i=2;i<=maxn-10;i++)//求前缀和
	mu[i]+=mu[i-1];
	int l,r;
	for(int i=1;i<=maxn-10;i++)//求g
	{
		l=1;
		while(l<=i)
		{
			r=i/(i/l);
			g[i]+=(ll)(r-l+1)*(i/l);
			l=r+1;
		}
	}
}

int main()
{
	scanf("%d",&t);
	work();
	while(t--)
	{
		scanf("%d %d",&n,&m);
		ans=0;
		int l=1,r;
		while(l<=min(n,m))//除法分块求解
		{
			r=min(n/(n/l),m/(m/l));
			ans+=(mu[r]-mu[l-1])*g[n/l]*g[m/l];
			l=r+1;
		}
		printf("%lld\n",ans);
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值