SHOI 2012 随机树 题解

题目传送门

题目大意: 一开始树上只有一个点,每次随机选择树上的一个叶子,给他两个儿子,直到树上有 n n n 个叶子。问叶节点平均深度树的平均深度

题解

第一问比较简单,设 f [ i ] f[i] f[i] 表示有 i i i 个叶子的树的叶节点平均深度,那么总深度就是 f [ i ] × i f[i]\times i f[i]×i,要从 f [ i − 1 ] f[i-1] f[i1] 转移到 f [ i ] f[i] f[i] 的话,就是随机选一个叶子节点,减去它的深度,然后加上 2 × 2\times 2× (它的深度+1),而它的期望深度就是 f [ i − 1 ] f[i-1] f[i1],所以有 f [ i ] = f [ i − 1 ] × ( i − 1 ) − f [ i − 1 ] + 2 × ( f [ i − 1 ] + 1 ) i = f [ i − 1 ] + 2 i f[i]=\frac {f[i-1]\times (i-1)-f[i-1]+2\times (f[i-1]+1)} i=f[i-1]+\frac 2 i f[i]=if[i1]×(i1)f[i1]+2×(f[i1]+1)=f[i1]+i2

第二问的话设 g [ i ] [ j ] g[i][j] g[i][j] 表示有 i i i 个叶子的且深度大于等于 j j j 的树的出现概率。二叉树的比较经典的转移就是枚举根节点的左右子树大小了,这题就是枚举左右子树中叶子节点数量,于是有:
g [ i ] [ j ] = ∑ k = 1 i − 1 g [ k ] [ j − 1 ] + g [ i − k ] [ j − 1 ] − g [ k ] [ j − 1 ] ∗ g [ i − k ] [ j − 1 ] i − 1 g[i][j]=\sum_{k=1}^{i-1} \frac {g[k][j-1]+g[i-k][j-1]-g[k][j-1]*g[i-k][j-1]} {i-1} g[i][j]=k=1i1i1g[k][j1]+g[ik][j1]g[k][j1]g[ik][j1]

k k k 枚举的是左子树中叶子数量, g [ k ] [ j − 1 ] g[k][j-1] g[k][j1] 表示左子树深度大于等于 j − 1 j-1 j1 的概率,此时不管右子树深度时多少,整棵树的深度都大于等于 j j j g [ i − k ] [ j − 1 ] g[i-k][j-1] g[ik][j1] 则是右子树的概率,但是,左右子树深度都大于等于 j − 1 j-1 j1 的情况在 g [ k ] [ j − 1 ] g[k][j-1] g[k][j1] g [ i − k ] [ j − 1 ] g[i-k][j-1] g[ik][j1] 中都被统计过,所以要去掉这个重复计算的部分,所以要减去 g [ k ] [ j − 1 ] ∗ g [ i − k ] [ j − 1 ] g[k][j-1]*g[i-k][j-1] g[k][j1]g[ik][j1]

而下面的除以 i − 1 i-1 i1,即乘以 1 i − 1 \frac 1 {i-1} i11,表示一棵有 i i i 个叶子的树,左子树有 k k k 个叶子的概率,证明也不难:

我们先不考虑求这个概率,先求 一棵有 i i i 个叶子的树,左子树有 k k k 个叶子的情况数

由于树中有 i i i 个叶子,所以这棵树已经被展开过 i − 1 i-1 i1 次,去掉一开始的展开根节点,对左右子树一共展开了 i − 2 i-2 i2 次,而其中有 k − 1 k-1 k1 次展开的是左子树,有 i − k − 1 i-k-1 ik1 次展开的是右子树,那么显然有 C i − 2 k − 1 C_{i-2}^{k-1} Ci2k1 种不同的情况,即 ( i − 2 ) ! ( k − 1 ) ! ( i − k − 1 ) ! \frac {(i-2)!} {(k-1)!(i-k-1)!} (k1)!(ik1)!(i2)!

再考虑对一个节点展开 p p p 次有多少种情况:

1、第一次展开只有 1 1 1 个点能选择,一共有 1 1 1 种不同的情况
2、第二次展开有 2 2 2 个点能选择,一共有 2 2 2 种不同的情况
3、第三次展开有 3 3 3 个点能选择,一共有 3 3 3 种不同的情况
……

所以一共有 p ! p! p! 种情况。

所以,被展开了 k − 1 k-1 k1 次的左子树一共有 ( k − 1 ) ! (k-1)! (k1)! 种不同的情况,右子树有 ( i − k − 1 ) ! (i-k-1)! (ik1)! 种,和 ( i − 2 ) ! ( k − 1 ) ! ( i − k − 1 ) ! \frac {(i-2)!} {(k-1)!(i-k-1)!} (k1)!(ik1)!(i2)! 乘起来,就得到了 一棵有 i i i 个叶子的数,左子树有 k k k 个叶子的情况数,而这个值,是 ( i − 2 ) ! (i-2)! (i2)!,与 k k k 无关。

所以,无论 k k k 是多少,情况数都是固定的,而一棵有 i i i 个叶子的树的总情况数有 ( i − 1 ) ! (i-1)! (i1)! 种,所以对于每个 k k k,出现的概率就是 ( i − 2 ) ! ( i − 1 ) ! = 1 i − 1 \frac {(i-2)!} {(i-1)!}=\frac 1 {i-1} (i1)!(i2)!=i11

于是,求出 g g g 数组后,最后的答案就是 ∑ j = 1 n − 1 f [ n ] [ j ] \sum_{j=1}^{n-1} f[n][j] j=1n1f[n][j]

你可能会问,期望不应该等于概率乘权值吗?你这是概率的总和啊。

注意看上面的定义:深度至少为 j j j,这意味着,一棵 n n n 个叶子深度为 j j j 的树,在 f [ n ] [ 1 ] , f [ n ] [ 1 ] , f [ n ] [ 2 ] , . . . , f [ n ] [ j ] f[n][1],f[n][1],f[n][2],...,f[n][j] f[n][1],f[n][1],f[n][2],...,f[n][j] 中都被统计过,所以他的出现概率被统计了 j j j 次,就相当于概率乘以深度 j j j 了。

于是代码如下:

#include <cstdio>
#define maxn 110

int type,n;
double f[maxn];
void work1()
{
	for(int i=2;i<=n;i++)
	f[i]=f[i-1]+2.0/i;
	printf("%.6lf",f[n]);
}
double g[maxn][maxn],ans=0;
void work2()
{
	for(int i=1;i<=n;i++)
	g[i][0]=1;
	for(int i=2;i<=n;i++)
	for(int j=1;j<i;j++)
	for(int k=1;k<i;k++)
	g[i][j]+=(g[k][j-1]+g[i-k][j-1]-g[k][j-1]*g[i-k][j-1])/(i-1);
	for(int i=1;i<n;i++)
	ans+=g[n][i];
	printf("%.6lf",ans);
}

int main()
{
	scanf("%d %d",&type,&n);
	if(type==1)work1(); else work2();
}

后来想了想,为什么 g g g 数组的定义是深度至少为 j j j,而不能恰好为 j j j 呢?

事实上,是可以的,但是复杂度就会从 n 3 n^3 n3 变成 n 4 n^4 n4

在转移的时候,先看左子树,假如左子树深度为 j − 1 j-1 j1,那么右子树的深度只能是 1 1 1 ~ j − 2 j-2 j2,假如右子树深度为 j − 1 j-1 j1,左子树深度就只能是 1 1 1 ~ j − 2 j-2 j2,或者两棵子树深度都是 j − 1 j-1 j1

1 1 1 ~ j − 2 j-2 j2 这部分就需要再来一个循环进行累加了(不过多处理一个前缀和数组事实上还是可以把复杂度变回 n 3 n^3 n3 了)。

最后统计答案的时候,就变成了 ∑ j = 1 n − 1 f [ n ] [ j ] × j \sum_{j=1}^{n-1}f[n][j]\times j j=1n1f[n][j]×j 了。

代码如下:

#include <cstdio>
#define maxn 110

int type,n;
double f[maxn];
void work1()
{
	for(int i=2;i<=n;i++)
	f[i]=f[i-1]+2.0/i;
	printf("%.6lf",f[n]);
}
double g[maxn][maxn],ans=0;
void work2()
{
	g[1][0]=1;
	for(int i=2;i<=n;i++)
	for(int j=1;j<i;j++)
	for(int k=1;k<i;k++)
	{
		double tot1=0,tot2=0;
		for(int l=0;l<=j-1;l++)tot1+=g[i-k][l];
		for(int l=0;l<j-1;l++)tot2+=g[k][l];
		g[i][j]+=(g[k][j-1]*tot1+g[i-k][j-1]*tot2)/(i-1);
	}
	for(int i=1;i<n;i++)
	ans+=g[n][i]*i;
	printf("%.6lf",ans);
}

int main()
{
	scanf("%d %d",&type,&n);
	if(type==1)work1(); else work2();
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值